排序相关算法--1.插入排序+冒泡排序回顾

1.基本分类

2.插入排序

特点:有实践意义(例如后期快排的优化),适应性强,一般不会到时间复杂度最坏的情况。

  1. 将第一个元素视为已经排好序的序列
  2. 取出下一个元素,在已经排好序的序列中从后往前比较,直到找到合适的位置插入。
  3. 重复步骤2,直到所有元素都插入到合适的位置。

  1. //插入排序
    #include<stdio.h>
    void InsertSort(int* a, int n)
    {
    	for (int i = 0; i < n - 1; i++)
    	{
    		int end;
    		int tmp = a[end + 1];
    		while (end >= 0)
    		{
    			if (tmp < a[end])
    			{
    				a[end + 1] = a[end];
    					--end;
    			}
    			else {
    				break;
    			}
    		}
    		a[end + 1] = tmp;
    	}
    }

上图一种特殊情况:此时不是break出来的而是一直进行--

所以不走else了,因此将最后一句放在外面无论是哪种情况都可以

单趟

排序:先理解单趟然后加上循环

整清楚边界。因为是从0开始访问的,所以只能访问到n-1;

因此在访问的时候只循环到n-2;,

i的最后一个值是n-2;所以是i<n-1;

计算插入排序的时间复杂度

时间复杂度计算最坏情况:逆序(就相当于一个等差数列)O(N^2)   N的平方。

最好:顺序 O(N)(只比一遍)

介于两者中间。

3.冒泡排序回顾

特点:没有实践意义,一般只用于教学

在指针基础知识点合集2(基础入门到深入理解)中有用指针讲解过一遍。

如果不用今天再供一种不用指针的方法。

void BubbleSort(int* a, int n)
{
	for (int j = 0; j < n; j++)
	{
		int flag = 0;
		for (int i = 0; i < n - j; i++)
		{
			//先排单趟
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				flag = 1;
			}
		}
		if (flag == 0)
		{
			break;
		}
	}
}

计算插入排序的时间复杂度

时间复杂度计算最坏情况:O(N^2)   N的平方。

最好: O(N)(直接就有序)

(和插入排序是一样的)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值