#797. 【提高】传球游戏

文章描述了一个传球游戏问题,通过动态规划求解在n个同学组成圆圈中,球经过m次传递后回到起点的不同传球方式数量。给出的代码示例展示了两种解决方案,一种使用基本的动态规划,另一种利用阶乘组合计算

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说明

上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。

游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师在此吹哨子时,传球停止,此时,拿着球没有传出去的那个同学就是败者,要给大家表演一个节目。

聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里。两种传球方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有三个同学1号、2号、3号,并假设小蛮为1号,球传了3次回到小蛮手里的方式有1->2->3->1和1->3->2->1,共2种。

【输入输出样例】

ball.in

ball.out

3 3

2

【限制】

40%的数据满足:3<=n<=30,1<=m<=20

100%的数据满足:3<=n<=30,1<=m<=30

输入格式

输入文件ball.in共一行,有两个用空格隔开的整数n,m(3<=n<=30,1<=m<=30)。

输出格式

输出文件ball.out共一行,有一个整数,表示符合题意的方法数。

样例

输入数据 1

3 3

Copy

输出数据 1

2

Copy

提示

【来源】noip2008普及组复赛T3。

代码1

//基本的dp,设f[i][j]为第i次传球传到位置j的方案数
//每次可从左边或者右边传来,处理一下两个左右端点即可
#include<bits/stdc++.h>
using namespace std;
int n,m,f[35][35];//f[i][j]为第i次传球传到位置j的方案数 
int main()
{
	ios::sync_with_stdio(false);
	cin.tie(0);
	cin>>n>>m;
	f[0][1]=1;
	for(int i=1;i<=m;i++)
	{
		for(int j=1;j<=n;j++)
		{
			if(j==1)//传到位置1只能是位置n或者位置2传来
			{
				f[i][j]=f[i-1][n]+f[i-1][2];
			} 
			if(j>1&&j<n)//中间位置就是左右传来即可
			{
				f[i][j]=f[i-1][j-1]+f[i-1][j+1];
			} 
			if(j==n)
			{
				f[i][j]=f[i-1][1]+f[i-1][n-1];
			}
		}
	}
	cout<<f[m][1];
	return 0; 
}

代码2

​#include <bits/stdc++.h>
using namespace std;
__int128 f[31] = {1};
__int128 step_combination(int a, int b) 
    { return f[a + b] / f[a] / f[b]; }
int main() {
    int n, m;
    cin >> n >> m;
    __int128 fratorial = 1;
    for (int i = 1; i <= 30; i++) 
        fratorial *= i, f[i] = fratorial;
    __int128 res = 0;
    if (m % 2 == 0) res = step_combination(m / 2, m / 2);
    for (int i = n; i <= m; i += n) {
        if ((m - i) & 1) continue;
        res += 2 * step_combination(
            (m - i) / 2, i + (m - i) / 2);
    }
    // print __int128 
    vector<int> res_digits;
    while (res > 0) {
        res_digits.push_back(res % 10);
        res /= 10;
    }
    if (res_digits.size() == 0) res_digits.push_back(0);
    for (int i = res_digits.size() - 1; i >= 0; i--) 
        cout << res_digits[i];
}

​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值