说明
上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。
游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师在此吹哨子时,传球停止,此时,拿着球没有传出去的那个同学就是败者,要给大家表演一个节目。
聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了m次以后,又回到小蛮手里。两种传球方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有三个同学1号、2号、3号,并假设小蛮为1号,球传了3次回到小蛮手里的方式有1->2->3->1和1->3->2->1,共2种。
【输入输出样例】
ball.in | ball.out |
3 3 | 2 |
【限制】
40%的数据满足:3<=n<=30,1<=m<=20
100%的数据满足:3<=n<=30,1<=m<=30
输入格式
输入文件ball.in共一行,有两个用空格隔开的整数n,m(3<=n<=30,1<=m<=30)。
输出格式
输出文件ball.out共一行,有一个整数,表示符合题意的方法数。
样例
输入数据 1
3 3
Copy
输出数据 1
2
Copy
提示
【来源】noip2008普及组复赛T3。
代码1
//基本的dp,设f[i][j]为第i次传球传到位置j的方案数
//每次可从左边或者右边传来,处理一下两个左右端点即可
#include<bits/stdc++.h>
using namespace std;
int n,m,f[35][35];//f[i][j]为第i次传球传到位置j的方案数
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>m;
f[0][1]=1;
for(int i=1;i<=m;i++)
{
for(int j=1;j<=n;j++)
{
if(j==1)//传到位置1只能是位置n或者位置2传来
{
f[i][j]=f[i-1][n]+f[i-1][2];
}
if(j>1&&j<n)//中间位置就是左右传来即可
{
f[i][j]=f[i-1][j-1]+f[i-1][j+1];
}
if(j==n)
{
f[i][j]=f[i-1][1]+f[i-1][n-1];
}
}
}
cout<<f[m][1];
return 0;
}
代码2
#include <bits/stdc++.h>
using namespace std;
__int128 f[31] = {1};
__int128 step_combination(int a, int b)
{ return f[a + b] / f[a] / f[b]; }
int main() {
int n, m;
cin >> n >> m;
__int128 fratorial = 1;
for (int i = 1; i <= 30; i++)
fratorial *= i, f[i] = fratorial;
__int128 res = 0;
if (m % 2 == 0) res = step_combination(m / 2, m / 2);
for (int i = n; i <= m; i += n) {
if ((m - i) & 1) continue;
res += 2 * step_combination(
(m - i) / 2, i + (m - i) / 2);
}
// print __int128
vector<int> res_digits;
while (res > 0) {
res_digits.push_back(res % 10);
res /= 10;
}
if (res_digits.size() == 0) res_digits.push_back(0);
for (int i = res_digits.size() - 1; i >= 0; i--)
cout << res_digits[i];
}