支持向量机解决非线性问题的简单代码(初学者)

核支持向量机求解非线性问题
支持向量机可以很容易的通过核化来解决非线性化分类问题。
执行下述代码创建一个简单的数据集,调用numpy的logical_or函数形成一个异或门,其中有100个样本分类标签为1,100为-1

import matplotlib.pyplot as plt
import numpy as np 

np.random.seed(1)
x_xor = np.random.randn(200,2)
y_xor = np.logical_xor(x_xor[:,0] > 0,x_xor[:,1] >0)
y_xor = np.where(y_xor,1,-1)
plt.scatter(x_xor[y_xor == 1,0],
            x_xor[y_xor == 1,1],
            c = 'b',marker = 'x',
            label = '1')
plt.scatter(x_xor[y_xor == -1,0],
            x_xor[y_xor == -1,1],
            c = 'r',marker = 's',                            #market代表的是图形形状,其中‘x’是叉形;‘s’是方形
            label = '-1')   

plt.xlim([-3,3])
plt.ylim([-3,3])
plt.legend(loc = 'best')
plt.show()

执行上述代码会产生具有随机噪声的XOR数据集图片如下
在这里插入图片描述
核方法的逻辑是针对线性不可分数据,建立非线性组合,通过映射函数把原始特征投影到一个高维空间,使得该特征在高维空间可分。

import matplotlib.pyplot as plt
import numpy as np
from sklearn.svm import SVC 
from matplotlib.colors import ListedColormap
import pandas as pd

np.random.seed(1)
x_xor = np.random.randn(200,2)
y_xor = np.logical_xor(x_xor[:,0] > 0,x_xor[:,1] >0)
y_xor = np.where(y_xor,1,-1)
plt.scatter(x_xor[y_xor == 1,0],
            x_xor[y_xor == 1,1],
            c = 'b',marker = 'x',
            label = '1')
plt.scatter(x_xor[y_xor == -1,0],
            x_xor[y_xor == -1,1],
            c = 'r',marker = 's',                            #market代表的是图形形状,其中‘x’是叉形;‘s’是方形
            label = '-1')   

plt.xlim([-3,3])
plt.ylim([-3,3])

def plot_decision_regions(x,y,classifier,resolution=0.02):

    #定义marker generator and color ma
    markers = ('s','x','o','^','v')
    colors = ('red','blue','lightgreen','gray','cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])

    #plot the decision surface
    x1_min,x1_max = x[:,0].min() - 1, x[:,0].max() + 1
    x2_min,x2_max = x[:,1].min() - 1, x[:,1].max() + 1
    xx1,xx2 = np.meshgrid(np.arange(x1_min,x1_max,resolution),np.arange(x2_min,x2_max,resolution))
    
    z = classifier.predict(np.array([xx1.ravel(),xx2.ravel()]).T)
    z = z.reshape(xx1.shape)

    plt.contourf(xx1,xx2,z,alpha=0.3,cmap=cmap)
    plt.xlim(xx1.min(),xx1.max())
    plt.xlim(xx2.min(),xx2.max())

svm = SVC(kernel = 'rbf',random_state = 1,gamma =0.10,C = 10.0)
svm.fit(x_xor,y_xor)
plot_decision_regions(x_xor,y_xor,classifier=svm)
plt.legend(loc = 'upper left')
plt.show()

在这里插入图片描述

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
支持向量回归(Support Vector Regression,简称SVR)是一种机器学习算法,用于解决回归问题。与传统的回归方法不同,SVR通过在特征空间中找到一个最优超平面来进行回归预测。 SVR的基本思想是将回归问题转化为一个求解最优超平面的优化问题。在SVR中,我们希望找到一个超平面,使得训练样本点尽可能地落在该超平面的ε-tube内,同时最小化超平面的法向量的范数,以保证预测结果的准确性和泛化能力。 SVR的核心概念是支持向量,它们是训练样本中距离超平面最近的样本点。这些支持向量决定了最优超平面的位置和方向。SVR通过调整超平面与支持向量之间的间隔来控制模型的复杂度和容错能力。 SVR的优点包括: 1. 可以处理非线性关系:通过使用核函数,SVR可以处理非线性关系,将数据映射到高维特征空间中进行回归分析。 2. 对异常值具有鲁棒性:由于SVR使用了ε-tube来容忍一定程度的误差,因此对于异常值具有一定的鲁棒性。 3. 泛化能力强:SVR通过最小化超平面的法向量的范数来控制模型的复杂度,从而提高了模型的泛化能力。 然而,SVR也有一些限制: 1. 对大规模数据集的处理较慢:由于SVR需要计算支持向量,因此对于大规模数据集的处理速度较慢。 2. 参数选择的敏感性:SVR中有一些参数需要手动调整,如核函数的选择和正则化参数的设置,这对于初学者来说可能比较困难。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值