卷积核输出边长计算公式以及一些不改变高宽的卷积核

本文介绍了在卷积神经网络中,如何通过全零填充保持图像尺寸不变,以及如何计算填充后的边长,给出了一些卷积核大小、填充和步长的示例。
摘要由CSDN通过智能技术生成

输出边长 = ⌈ 全零填充后的边长 − 核长 + 1 步长 ⌉ \text{输出边长} = \left\lceil \frac{\text{全零填充后的边长} - \text{核长} + 1}{\text{步长}} \right\rceil 输出边长=步长全零填充后的边长核长+1
全零填充后的边长 = 原始边长 + 2 × 填充宽度 \text{全零填充后的边长} = \text{原始边长} + 2 \times \text{填充宽度} 全零填充后的边长=原始边长+2×填充宽度

一些不改变原始图像输入高度和宽度的卷积核、填充和步长的搭配示例

填充数量 = 卷积核大小 − 1 2 \text{填充数量} = \frac{\text{卷积核大小} - 1}{2} 填充数量=2卷积核大小1
步长为1满足以上公式即可
列:

卷积核填充步长
3x311
1x101
5x532
7x733

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值