因为太多的博客并没有深入理解,本文是自己学习后加入自己深入理解的总结记录,方便自己以后查看。
F.interplate() 的计算原理详解
学习前言
一起来学习nn.BatchNorm2d()的原理,如果有用的话,请记得点赞+关注哦。
参考链接:
一、上采样
torch.nn.functional.interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None)
1、input (Tensor) – 输入张量
2、size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]) – 输出大小.
3、scale_factor (float or Tuple[float]) – 指定输出为输入的多少倍数。如果输入为tuple,其也要制定为tuple类型
4、mode (str) – 可使用的上采样算法,有’nearest’, ‘linear’, ‘bilinear’, ‘bicubic’ , ‘trilinear’和’area’. 默认使用’nearest’
5、align_corners (bool, optional) – 几何上,我们认为输入和输出的像素是正方形,而不是点。如果设置为True,则输入和输出张量由其角像素的中心点对齐,从而保留角像素处的值。如果设置为False,则输入和输出张量由它们的角像素的角点对齐,插值使用边界外值的边值填充;当scale_factor保持不变时,使该操作独立于输入大小。仅当使用的算法为’linear’, ‘bilinear’, 'bilinear’or 'trilinear’时可以使用。默认设置为False
二、作用
上采样,在深度学习框架中,可以简单的理解为任何可以让你的图像变成更高分辨率的技术:最简单的方式是重采样和插值:将输入图片input image进行rescale到一个想要的尺寸,而且计算每个点的像素点,使用如双线性插值bilinear等插值方法对其余点进行插值
torch.nn.functional.interpolate实现插值和上采样
三、计算原理
import torch
from torch import nn
import torch.nn.functional as F
input = torch.arange(1, 5, dtype=torch.float32).view(1, 1, 2, 2)
input
x1 = F.interpolate(input, scale_factor=2, mode='nearest')
x1
x2 = F.interpolate(input, scale_factor=2, mode='bilinear', align_corners=True)
x2
input([[[[1., 2.],
[3., 4.]]]])
x1([[[[1., 1., 2., 2.],
[1., 1., 2., 2.],
[3., 3., 4., 4.],
[3., 3., 4., 4.]]]])
x2([[[[1.0000, 1.3333, 1.6667, 2.0000],
[1.6667, 2.0000, 2.3333, 2.6667],
[2.3333, 2.6667, 3.0000, 3.3333],
[3.0000, 3.3333, 3.6667, 4.0000]]]])