如果你是Linux或Mac用户,可能已经在命令行中使用过grep通过匹配模式来搜索文件。正则表达式(regex)允许你基于模式搜索、匹配并操作文本,这使得它们成为强大的文本处理和数据清洗工具。
在Python中,可以使用内置的re模块进行正则表达式匹配操作。在本教程中,我们将介绍如何利用正则表达式对数据进行清洗。我们会学习如何去除不需要的字符、提取特定模式、查找和替换文本等操作。
-
去除不需要的字符
在开始之前,先导入内置的re模块:
import re
字符串字段在分析前几乎总需要大量清洗。由于不同的数据格式,不需要的字符常常出现在数据中,令分析变得困难。正则表达式可以高效地帮助你去除这些字符。
你可以使用re模块中的sub()函数来替换或删除所有模式或特殊字符的出现。例如,假设你有包含电话号码、其中带有短横线和括号的字符串,可以这样去除它们:
text = "Contact info: (123)-456-7890 and 987-654-3210."
cleaned_text = re.sub(r'[()-]', '', text)
print(cleaned_text)
这里,re.sub(pattern, replacement, string)
用于将字符串中所有匹配pattern的内容替换为replacement。我们使用r'[()-]'
模式来匹配所有出现的(、)或-,得到输出:
输出结果:
Contact info: 1234567890 and 9876543210
-
提取特定模式
从文本字段中提取邮箱地址、URL或电话号码等常见且有用的信息,是数据清洗的常见任务。要提取所有感兴趣的特定模式,可以使用findall()函数。
比如,你可以这样从文本中提取邮箱地址:
text = "Please reach out to us at support@example.org or help@example.org."
emails = re.findall(r'\b[\w.-]+?@\w+?\.\w+?\b', text)
print(emails)
re.findall(pattern, string)
会查找字符串中所有匹配pattern的内容,并以列表形式返回。这里我们用r'\b[\w.-]+?@\w+?\.\w+?\b'
匹配所有邮箱地址:
输出结果:
['support@example.org', 'help@example.org']
-
替换模式
我们已经用sub()函数移除了不需要的特殊字符,但你也可以用它将某种模式替换成另一种内容,使字段更适合后续分析。
例如,移除多余的空格:
text = "Using regular expressions."
cleaned_text = re.sub(r'\s+', ' ', text)
print(cleaned_text)
r'\s+'
用于匹配一个或多个空白字符,替换为单个空格,输出:
输出结果:
Using regular expressions.
-
验证数据格式
验证数据格式可以确保数据的一致性和正确性。正则表达式能用于验证邮箱、电话号码和日期等格式。
例如,使用match()函数验证邮箱地址:
email = "test@example.com"
if re.match(r'^\b[\w.-]+?@\w+?\.\w+?\b$', email):
print("Valid email")
else:
print("Invalid email")
在这个例子中,邮箱字符串是有效的:
输出结果:
Valid email
-
按模式分割字符串
有时你可能希望根据某种模式或特定分隔符,将一个字符串分割成多个字符串。可以使用split()函数来实现。
例如,将文本字符串按句子分割:
text = "This is sentence one. And this is sentence two! Is this sentence three?"
sentences = re.split(r'[.!?]', text)
print(sentences)
re.split(pattern, string)
会在所有匹配pattern的位置将字符串拆分开。这里使用r'[.!?]'
匹配句号、感叹号或问号:
输出结果:
['This is sentence one', ' And this is sentence two', ' Is this sentence three', '']
结合Pandas和正则表达式实现数据框清洗
将正则表达式与pandas结合,可以高效地对数据框进行清洗。
例如,移除姓名中的非字母字符,并验证邮箱地址:
import pandas as pd
data = {
'names': ['Alice123', 'Bob!@#', 'Charlie$$$'],
'emails': ['alice@example.com', 'bob_at_example.com', 'charlie@example.com']
}
df = pd.DataFrame(data)
# 移除姓名中的非字母字符
df['names'] = df['names'].str.replace(r'[^a-zA-Z]', '', regex=True)
# 验证邮箱地址
df['valid_email'] = df['emails'].apply(lambda x: bool(re.match(r'^\b[\w.-]+?@\w+?\.\w+?\b$', x)))
print(df)
上述代码中:
df['names'].str.replace(pattern, replacement, regex=True)
用于将Series中所有匹配pattern的内容替换为replacement。
lambda x: bool(re.match(pattern, x))
这个lambda函数应用正则匹配,并将结果转换为布尔值。
输出结果如下:
names | emails | valid_email | |
---|---|---|---|
0 | Alice | alice@example.com | True |
1 | Bob | bob_at_example.com | False |
2 | Charlie | charlie@example.com | True |
总结
希望本教程对你有所帮助。让我们回顾一下所学内容:
-
使用re.sub去除不必要的字符,比如电话号码中的短横线和括号等。
-
使用re.findall从文本中提取特定模式。
-
使用re.sub替换模式,如将多个空格合并为一个空格。
-
使用re.match验证数据格式,确保数据符合特定格式(如验证邮箱地址)。
-
使用re.split按模式分割字符串。
-
实际应用中,可结合正则表达式和pandas高效清洗数据框中的文本字段。建议为你的正则表达式添加注释,说明其用途,以提升代码的可读性和可维护性。
想要了解更多关于pandas数据清洗的内容,可以阅读《7 Steps to Mastering Data Cleaning with Python and Pandas》。