人工智能席卷全球。作为数据领域的专业人士,了解人工智能、其影响以及应用方法已成为必备技能。为助力您的AI学习之旅,本文将为您梳理2025年值得关注的十大免费AI书籍。
1. 解密人工智能(Demystifying Artificial Intelligence)
人工智能常被视为时髦词汇,但许多人对其潜力仍知之甚少。Emmanuel Gillain的《解密人工智能》探讨了AI对现实世界应用的影响,以及AI如何在商业中保持相关性,涵盖以下主题:
-
AI是什么,如何与机器学习区分
-
符号主义AI与统计AI的区别
-
AI系统如何解决问题
-
机器如何从数据中学习
-
AI如何应对不确定性
-
为什么伦理和透明度至关重要
如果您从未接触过人工智能,想了解其对业务的潜力,这本书非常适合您。
2. 解锁人工智能(Unlocking Artificial Intelligence)
将AI应用于现实世界比以往任何时候都更重要,因为这项新技术能迅速提升专业工作效率。Christopher Mutschler、Christian Münzenmayer、Norman Uhlmann和Alexander Martin合著的《解锁人工智能》从基础理论到实际应用,为您全面讲解AI,主要内容包括:
-
AI如何从数据中学习
-
不确定性量化在AI系统中的作用
-
强化学习代理
-
AI在工业领域的应用
想要全面了解AI在现实世界中的应用,不容错过此书。
3. 人工智能与评估(Artificial Intelligence and Evaluation)
过去,评估项目、政策、科研提案等需耗费大量时间。如今,AI模型的引入让文件评估变得更为便捷。在AI崛起的时代,评估人员需要适应新变化。《人工智能与评估》由Steffen Bohni Nielsen、Francesco Mazzeo Rinaldi和Gustav Jakob Petersson合著,帮助评估人员掌握新技能,涉及内容有:
-
AI如何改变评估领域
-
应该使用哪些数字工具
-
AI评估的风险
-
真实案例研究
无论您是否从事评估工作,这本书都将为您的AI职业之路增添新技能。
4. 人工智能:计算代理的基础(第3版)
Artificial Intelligence: Foundations of Computational Agents, 3rd Edition
代理(Agent)已成为AI领域中极具价值的工具,众多企业争相招募能胜任此类工作的专业人才。作为数据从业者,掌握代理基础至关重要。《人工智能:计算代理的基础(第3版)》由David L. Poole与Alan K. Mackworth合著,内容涵盖:
-
代理的介绍
-
确定性推理与规划
-
不确定性下的推理与规划
-
不确定性下的规划与行动
-
AI的宏观图景
如您对代理实现感兴趣,这本书不容错过。
5. 神经网络(Neural Networks)
许多课程介绍了神经网络的基本概念,但这本书更深入探讨其历史及对文化、政治和科学领域的影响。Ranjodh Singh Dhaliwal、Théo Lepage-Richer和Lucy Suchman合著的《神经网络》讲述了神经网络模型在多个领域的应用,并解析其历史塑造过程,内容包括:
-
神经网络如何被历史塑造
-
神经网络的类比
-
实验性媒体与神经智能理念
-
神经网络在社会中的表现
-
神经网络为何对现代AI至关重要
本书并非传统的技术教程,而是从社会视角全面探讨神经网络,对关注其影响的数据专业人士意义重大。
6. 深度学习(Deep Learning)
深度学习已成为AI模型的黄金标准,也是希望深入AI领域的数据专业人才的必备技能。在Ian Goodfellow、Yoshua Bengio和Aaron Courville合著的《深度学习》中,您将系统掌握以下内容:
-
应用数学与机器学习基础
-
实用深度网络
-
深度学习研究
如想提升深度学习知识,这本书不可或缺。
7. 大型语言模型基础(Foundations of Large Language Models)
大型语言模型(LLM)是推动AI走向公众视野的重要发明。随着ChatGPT等LLM产品的普及,AI的应用愈发广泛。想要从事自然语言生成AI的相关工作,必须了解LLM。Tong Xiao和Jingbo Zhu合著的《大型语言模型基础》涵盖:
-
LLM的预训练过程
-
生成式模型的扩展与微调
-
提示与上下文学习的作用
-
LLM在人类偏好对齐中的技术
-
关键架构
-
LLM实现的工程挑战
鉴于LLM对AI职业发展的重要性,这本书绝对值得一读。
8. 自然语言处理的基础模型(Foundation Models for Natural Language Processing)
现代AI系统越来越依赖于预训练语言模型和基础模型。想深入将这些模型应用于工业领域,需要理解其工作原理。《自然语言处理的基础模型》由Gerhard Paaß和Sven Giesselbach合著,内容包括:
-
预训练语言模型的设计与优化
-
基础模型的处理方法
-
基于Transformer的架构
-
基础模型的微调
-
基础模型评估
-
道德与社会影响
立志成为AI领域专业人士时,这本书将助您一臂之力。
9. 用Python编程计算机视觉(Programming Computer Vision with Python)
图像分析与生成是AI中最令人兴奋的领域之一,巨大的潜力吸引着众多数据专业人士学习相关技能。《用Python编程计算机视觉》由Jan Erik Solem著,指导您学习图像分析,内容包括:
-
用Python处理图像
-
检测图像特征
-
实现图像变换
-
构建视觉应用
想高效学习图像数据分析,这本书值得拥有。
10. AI长期博弈中的智能代理:可信混合AI的计算认知建模
Agents in the Long Game of AI: Computational Cognitive Modeling for Trustworthy, Hybrid AI
当前AI领域最缺乏的是系统的可信度。许多公司仍对应用AI(尤其是代理实现)于核心业务持观望态度。本书提出了一种名为“赋予语言能力的智能代理(LEIA)”的方法,将符号推理与数据驱动工具相结合。Marjorie McShane、Sergei Nirenburg和Jesse English合著的《AI长期博弈中的智能代理》探讨:
-
赋予语言能力的智能代理(LEIA)
-
用于可信AI的符号推理与机器学习
-
认知建模
-
代理行为
-
AI的可解释性与协作
通过构建更可信的系统,您的AI应用将在商业中更具价值。
结语
身处数据时代,作为数据专业人士,我们需要不断提升自我。市面上AI学习资源众多,而以上十本免费人工智能书籍,值得您在2025年细细品读。
希望本推荐对您有所帮助!