深度学习训练营P10:Pytorch实现车牌识别

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

代码: 

#%%
import matplotlib
import matplotlib.pyplot as plt
from torchvision.transforms import transforms
from torch.utils.data import DataLoader
from torchvision import datasets
import torchvision.models as models
import torch.nn.functional as F
import torch.nn as nn
import torch, torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
#%%
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
#%%
import os, PIL, random, pathlib
import matplotlib.pyplot as plt

# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

data_dir = './015_licence_plate/015_licence_plate'
data_dir = pathlib.Path(data_dir)
# print(data_dir)

data_paths = list(data_dir.glob('*'))
# print(data_paths)
classeNames = [str(path).split("\\")[-1].split("_")[1].split(".")[0] for path in data_paths]
print(len(classeNames))
print(classeNames)
#%%
data_paths = list(data_dir.glob('*'))
data_paths_str = [str(path) for path in data_paths]
data_paths_str
#%%
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

plt.figure(figsize=(14, 5))
plt.suptitle("数据示例(K同学啊)", fontsize=15)

for i in range(18):
    plt.subplot(3, 6, i + 1)
    plt.xticks([])
    plt.yticks([])
    plt.grid(False)

    # 显示图片
    images = plt.imread(data_paths_str[i])
    plt.imshow(images)
plt.show()
#%%
import numpy as np

char_enum = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "皖", "闽", "赣", "鲁", \
             "豫", "鄂", "湘", "粤", "桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "军", "使"]

number = [str(i) for i in range(0, 10)]  # 0 到 9 的数字
alphabet = [chr(i) for i in range(65, 91)]  # A 到 Z 的字母

char_set = char_enum + number + alphabet
char_set_len = len(char_set)
label_name_len = len(classeNames[0])


# 将字符串数字化
def text2vec(text):
    vector = np.zeros([label_name_len, char_set_len])
    for i, c in enumerate(text):
        idx = char_set.index(c)
        vector[i][idx] = 1.0
    return vector


all_labels = [text2vec(i) for i in classeNames]
#%%
import os
import pandas as pd
from torchvision.io import read_image
from torch.utils.data import Dataset
import torch.utils.data as data
from PIL import Image


class MyDataset(data.Dataset):
    def __init__(self, all_labels, data_paths_str, transform):
        self.img_labels = all_labels  # 获取标签信息
        self.img_dir = data_paths_str  # 图像目录路径
        self.transform = transform  # 目标转换函数

    def __len__(self):
        return len(self.img_labels)

    def __getitem__(self, index):
        image = Image.open(self.img_dir[index]).convert(
            'RGB')  #plt.imread(self.img_dir[index])  # 使用 torchvision.io.read_image 读取图像
        label = self.img_labels[index]  # 获取图像对应的标签

        if self.transform:
            image = self.transform(image)

        return image, label  # 返回图像和标签
#%%
# 缺少
# 定义数据转换
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std =[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = MyDataset(all_labels, data_paths_str, train_transforms)

train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_size, test_size
#%%
train_loader = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=16,
                                           shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=16,
                                          shuffle=True)

print("The number of images in a training set is: ", len(train_loader) * 16)
print("The number of images in a test set is: ", len(test_loader) * 16)
print("The number of batches per epoch is: ", len(train_loader))
#%%
for X, y in test_loader:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
#%%
class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24 * 50 * 50, label_name_len * char_set_len)
        self.reshape = Reshape([label_name_len, char_set_len])

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool(x)
        x = F.relu(self.bn4(self.conv4(x)))
        x = F.relu(self.bn5(self.conv5(x)))
        x = self.pool(x)
        x = x.view(-1, 24 * 50 * 50)
        x = self.fc1(x)

        # 最终reshape
        x = self.reshape(x)

        return x


# 定义Reshape层
class Reshape(nn.Module):
    def __init__(self, shape):
        super(Reshape, self).__init__()
        self.shape = shape

    def forward(self, x):
        return x.view(x.size(0), *self.shape)


device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)
model
#%%
import torchsummary

''' 显示网络结构 '''
torchsummary.summary(model, (3, 224, 224))
#%%
optimizer = torch.optim.Adam(model.parameters(),
                             lr=1e-4,
                             weight_decay=0.0001)

loss_model = nn.CrossEntropyLoss()
#%%
from torch.autograd import Variable


def test(model, test_loader, loss_model):
    size = len(test_loader.dataset)
    num_batches = len(test_loader)

    model.eval()
    test_loss, correct = 0, 0
    with torch.no_grad():
        for X, y in test_loader:
            X, y = X.to(device), y.to(device)
            pred = model(X)

            test_loss += loss_model(pred, y).item()

    test_loss /= num_batches

    print(f"Avg loss: {test_loss:>8f} \n")
    return correct, test_loss


def train(model, train_loader, loss_model, optimizer):
    model = model.to(device)
    model.train()

    for i, (images, labels) in enumerate(train_loader, 0):  #0是标起始位置的值。

        images = Variable(images.to(device))
        labels = Variable(labels.to(device))

        optimizer.zero_grad()
        outputs = model(images)

        loss = loss_model(outputs, labels)
        loss.backward()
        optimizer.step()

        if i % 1000 == 0:
            print('[%5d] loss: %.3f' % (i, loss))
#%%
test_acc_list = []
test_loss_list = []
epochs = 30

for t in range(epochs):
    print(f"Epoch {t + 1}\n-------------------------------")
    train(model, train_loader, loss_model, optimizer)
    test_acc, test_loss = test(model, test_loader, loss_model)
    test_acc_list.append(test_acc)
    test_loss_list.append(test_loss)
print("Done!")
#%%
import numpy as np
import matplotlib.pyplot as plt

x = [i for i in range(1, 31)]

plt.plot(x, test_loss_list, label="Loss", alpha=0.8)

plt.xlabel("Epoch")
plt.ylabel("Loss")

plt.legend()
plt.show()

总结:

优点

  1. 有效特征提取:通过多层卷积层和池化层,可以有效提取图像的局部特征,并通过批归一化层提高训练的稳定性和收敛速度。
  2. 网络结构简单明了:设计简洁,层数适中,易于理解和实现。
  3. 合理的数据预处理:使用了标准的图像预处理方法(如归一化、尺寸调整),有助于模型的训练和性能提升。
  4. 适合小数据集:相对于深层网络,该结构更适合用于小数据集,训练速度快,避免过拟合。

缺点

  1. 泛化能力有限:网络层数较少,参数较少,可能限制了模型的表达能力,在更复杂的任务中可能表现不佳。
  2. 对噪声敏感:没有加入正则化手段,如 dropout,容易受到噪声的干扰。
  3. 适应性差:针对特定任务设计的网络,若应用于其他任务,可能需要重新调整和优化。

运行结果分析

从训练过程中损失曲线图来看,损失在训练初期迅速下降,在训练后期趋于平稳,说明模型在训练过程中不断学习和优化,逐渐收敛。最终损失稳定在一个较低的值,表明模型性能较好。具体结果如下:

  • 训练效果:损失在前几个 epoch 下降迅速,之后缓慢下降,表明模型逐渐学习到了图像的特征。
  • 收敛性:在第20个 epoch 左右,损失基本趋于平稳,说明模型基本达到了收敛状态。

综上所述,该模型适用于车牌识别任务,但在更复杂的场景或数据量较大的情况下,可能需要进一步优化模型结构和训练策略,以提高泛化能力和鲁棒性。

优化方向

  1. 增加网络深度

    • 更多卷积层:增加卷积层的数量,以提取更高层次的特征。
    • 残差网络(ResNet):使用残差块可以在增加网络深度的同时,缓解梯度消失的问题,提高模型的表达能力。
  2. 正则化手段

    • Dropout:在全连接层或卷积层后使用 dropout,可以减少过拟合,提高模型的泛化能力。
    • L2 正则化:在损失函数中加入 L2 正则化项,可以限制模型参数的大小,减少过拟合风险。
  3. 优化算法

    • 学习率调度:使用学习率调度器,如阶梯式下降、余弦退火等,可以在训练过程中动态调整学习率,提升训练效果。
    • 优化器选择:尝试不同的优化器,如 AdamW、RMSprop 等,选择最适合当前任务的优化器。
  4. 预训练模型

    • 迁移学习:使用在大规模数据集(如 ImageNet)上预训练的模型,进行迁移学习,可以在小数据集上快速获得较好的性能。
    • 微调(Fine-tuning):在预训练模型的基础上,对特定任务进行微调,以适应特定的数据集和任务。
  5. 模型集成

    • 多模型融合:使用多种模型进行融合,如 bagging、boosting 等方法,可以提高模型的鲁棒性和泛化能力。
    • 软投票:在预测阶段,使用多个模型的预测结果进行加权平均,提高预测的准确性。
  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值