Holistic classifcation of CT attenuation patterns for interstitial lung diseases via dcn论文记录

该研究提出了一种新的CT图像分类方法,利用深度卷积神经网络(DCN)对肺间质性病变(ILD)的整体CT衰减模式进行整体分类。传统方法通常基于ROI的patch特征,而此方法则采用整个图像作为输入,提高了对ILD模式的识别和分类能力。实验表明,通过使用三个衰减范围,可以增强不同疾病模式之间的视觉区分,并适应CNN架构。研究还在患者层面上进行了训练和测试,强调了整体图像分类相对于仅关注局部patch的临床相关性。未来工作将探索同一CT图像上多个病灶的多标签检测。
摘要由CSDN通过智能技术生成

利用深卷积神经网络对肺间质性病变的CT衰减模式进行整体分类
本文提出了一种对CT图像进行固体成像模式分类的新方法。主要区别在于,该算法使用整个图像作为整体输入。通过绕过人工输入roi的前提。

肺部疾病的CAD系统,大多数侧重于识别和量化单一模式,如实变或结节。对于计算机辅助的ILD分类,以往的研究均采用了基于patch的图像表征方法,分级结果理想。

作者的方法可用于CT整体切片的分类和标签ILD标记,并可用于大量的影像学数据的预处理,预处理后的数据可以作为反馈放大训练数据集。

下图展示六种肺组织的纵向切片。
在这里插入图片描述

对原始CT图像重新标注,获得了三个与肺异常模式相关的衰减尺度,分别为低衰减尺度,高衰减尺度,组成模式。
使用三个衰减范围提供了更好的可视性或视觉分离在所有六类固体疾病。使用这三个范围的另一个原因是为了适应我们采用的CNN架构来自ImageNet使用自然图像的RGB值。
三个CT衰减范围的使用也适应了三个输入通道的CNN架构。
在这里插入图片描述

下图是训练架构的流程图。
在这里插入图片描述
所有患者在患者层面上被随机分配为两个亚组进行培训(100例患者)和测试(20例患者),同一个患者的不同切片不会同时出现在训练和测试中。

作者以整体图像(即CT切片)作为输入,与以往不同的是输入ROI区域的patch。注意以前的工作只报告了patch分类的表现,而不是对整个图像切片或患者层面的表现评估,后者实际上更具有临床相关性。

未来的工作:有些病在同一幅CT图像上有多个病,在片级别使用多个标签进行检测也将非常有意义。

在使用Python来安装geopandas包时,由于geopandas依赖于几个其他的Python库(如GDAL, Fiona, Pyproj, Shapely等),因此安装过程可能需要一些额外的步骤。以下是一个基本的安装指南,适用于大多数用户: 使用pip安装 确保Python和pip已安装: 首先,确保你的计算机上已安装了Python和pip。pip是Python的包管理工具,用于安装和管理Python包。 安装依赖库: 由于geopandas依赖于GDAL, Fiona, Pyproj, Shapely等库,你可能需要先安装这些库。通常,你可以通过pip直接安装这些库,但有时候可能需要从其他源下载预编译的二进制包(wheel文件),特别是GDAL和Fiona,因为它们可能包含一些系统级的依赖。 bash pip install GDAL Fiona Pyproj Shapely 注意:在某些系统上,直接使用pip安装GDAL和Fiona可能会遇到问题,因为它们需要编译一些C/C++代码。如果遇到问题,你可以考虑使用conda(一个Python包、依赖和环境管理器)来安装这些库,或者从Unofficial Windows Binaries for Python Extension Packages这样的网站下载预编译的wheel文件。 安装geopandas: 在安装了所有依赖库之后,你可以使用pip来安装geopandas。 bash pip install geopandas 使用conda安装 如果你正在使用conda作为你的Python包管理器,那么安装geopandas和它的依赖可能会更简单一些。 创建一个新的conda环境(可选,但推荐): bash conda create -n geoenv python=3.x anaconda conda activate geoenv 其中3.x是你希望使用的Python版本。 安装geopandas: 使用conda-forge频道来安装geopandas,因为它提供了许多地理空间相关的包。 bash conda install -c conda-forge geopandas 这条命令会自动安装geopandas及其所有依赖。 注意事项 如果你在安装过程中遇到任何问题,比如编译错误或依赖问题,请检查你的Python版本和pip/conda的版本是否是最新的,或者尝试在不同的环境中安装。 某些库(如GDAL)可能需要额外的系统级依赖,如地理空间库(如PROJ和GEOS)。这些依赖可能需要单独安装,具体取决于你的操作系统。 如果你在Windows上遇到问题,并且pip安装失败,尝试从Unofficial Windows Binaries for Python Extension Packages网站下载相应的wheel文件,并使用pip进行安装。 脚本示例 虽然你的问题主要是关于如何安装geopandas,但如果你想要一个Python脚本来重命名文件夹下的文件,在原始名字前面加上字符串"geopandas",以下是一个简单的示例: python import os # 指定文件夹路径 folder_path = 'path/to/your/folder' # 遍历文件夹中的文件 for filename in os.listdir(folder_path): # 构造原始文件路径 old_file_path = os.path.join(folder_path, filename) # 构造新文件名 new_filename = 'geopandas_' + filename # 构造新文件路径 new_file_path = os.path.join(folder_path, new_filename) # 重命名文件 os.rename(old_file_path, new_file_path) print(f'Renamed "{filename}" to "{new_filename}"') 请确保将'path/to/your/folder'替换为你想要重命名文件的实际文件夹路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值