LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code

本文是LLM系列文章,针对《LiveCodeBench: Holistic and Contamination Free Evaluation of
Large Language Models for Code》的翻译。

LiveCodeBench:大型代码语言模型的整体无污染评估

摘要

应用于代码相关应用程序的大型语言模型(LLM)已成为一个突出的领域,吸引了学术界和工业界的极大兴趣。然而,随着新的和改进的LLM的开发,现有的评估基准(如HumanEval、MBPP)不再足以评估其能力。在这项工作中,我们提出了LiveCodeBench,这是一种对代码LLM的全面且无污染的评估,它从三个竞争平台(即LeetCode、AtCoder和CodeForces)的比赛中收集新问题。值得注意的是,我们的基准测试还关注更广泛的代码相关功能,如自修复、代码执行和测试输出预测,而不仅仅是代码生成。目前,LiveCodeBench在2023年5月至2024年5月期间发布了500多个编码问题。我们在LiveCodeBench上评估了18个基本LLM和34个指令调优LLM。我们介绍了关于污染、整体性能比较、现有基准中潜在的过度拟合以及单个模型比较的实证结果。我们将发布所有提示和模型完成,用于进一步的社区分析,以及用于添加新场景和模型的通用工具包。

1 引言

2 整体评价<

《Accurate 3D Face Reconstruction from a Single Image: A Holistic Approach》这篇论文的主要内容是介绍了一种基于单个图像的准确三维人脸重建方法,其采用了一种全面的方法来捕捉人脸的几何形状和纹理信息。 论文的作者 Aaron S. Jackson, Adrian Bulat, Vasileios Argyriou, Georgios Tzimiropoulos 提出了一个由两个主要组件组成的框架:3DMM(3D Morphable Model)回归器和姿态估计器。 首先,他们使用3DMM回归器来估计人脸的形状参数和纹理参数。这个回归器通过将人脸图像映射到3DMM参数空间,利用深度卷积神经网络(CNN)来预测人脸的三维形状和纹理参数。 然后,他们提出了一种姿态估计器来估计人脸的姿态参数。这个姿态估计器使用CNN来预测人脸的旋转和平移参数,以校正人脸的姿态。 最后,通过将形状参数、纹理参数和姿态参数结合起来,他们可以生成准确的三维人脸重建结果。 该方法在多个数据集上进行了实验评估,结果表明,与其他基准方法相比,该方法能够产生更准确和逼真的三维人脸重建结果。此外,该方法还具有一定的鲁棒性,对于具有不同姿态和光照条件的人脸图像也能取得良好的效果。 总的来说,《Accurate 3D Face Reconstruction from a Single Image: A Holistic Approach》这篇论文提出了一种综合性的方法,通过结合形状参数、纹理参数和姿态参数,实现了准确的三维人脸重建。这个方法在单个图像上能够生成高质量的三维人脸模型,对于人脸分析、虚拟现实等应用具有重要意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值