算法结构
本文提出利用卷积神经网络对肺部CT图像进行分类,具体包括四个步骤:(1)通过使用数据库提供的说明文档,找出恶性肺结节和正常结节的CT图像;(2)利用最大类间方差法对 CT 图像进行分割得到二值图像;(3)设计的合适的卷积神经网络;(4)对数据集进行训练和分类,从而筛查出恶性肺结节的CT图像。
卷积神经网络结构
本文自己建立了卷积神经网络,采用双通道的形式,每个通道的结构一样,但是所训练的数据集分别为原始CT图像和预处理后的图像。网络能充分提取存在于原始图像上的有效信息,对于预处理后的图像特征也能充分挖掘潜在有效特征。
实验
本文使用的CT数据集是来自LIDC数据库。最后选用820张(403个良性结节和417张恶行结节)的CT图像作为训练和测试。
基于卷积神经网络的肺结节分类算法
最新推荐文章于 2024-05-04 17:49:45 发布