二分算法的应用——不只是查找值!

二分算法的应用——不只是查找值!

  • 二分查找

二分搜索法,不仅仅是查找值,在算法竞赛中,经常可以见到二分搜索法和其他算法结合的题目。

  • 从有序数组中查找某个值
  • 假定一个解并判断是否可行
  • 最大化最小值
  • 最大化平均值
查找值(手写二分 和 使用lower_bound )
#include <iostream>
#include <algorithm>
using namespace std;
​
const int maxn = 1000 + 10;
​
void solve()
{
    int a[] = {1, 3, 8, 11, 14, 19, 20, 23, 39};
    int n = 9, k = 14;
    int lb = 0, ub = n;
​
    //重复循环, 直到解的存在范围不大于1
    while (ub - lb > 0)
    {
        int mid = (lb + ub) / 2;
        if (a[mid] > k) 
        {
            ub = mid;
        }
        else if (a[mid] < k)
        {
            lb = mid;
        }
        else
        {
            cout << mid << endl;
            break;
        }
    } 
}
​
void stl_solve()
{
    int a[] = { 1, 3, 8, 11, 14, 19, 20, 23, 39 };
  
    int loc = lower_bound(a, a + 9, 14) - a;
    cout << loc << endl;
}
​
int main()
{
​
    solve();
    stl_solve();
    return 0;
}
  • 假定一个解并判断是否可行

原题链接: http://poj.org/problem?id=1064

题意: 有 N条绳子, 他们 长度分别为 。如果从它们中切割出  条长度相同 的绳子的话,这  条绳子每条绳子 最长能有多长? 答案保留到小数点后2 位。

限制条件

输入

N = 4
K = 11
L = {8.02, 7.43, 4.57, 5.39}

输出

2.00 (每条绳子分别可以得到4条、3条、2条、2条,共计11条绳子)

#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
​
/*
4
11
8.02
7.43
4.57
5.39
*/
const int maxn = 10000 + 200;
//输入
int N, K;
double L[maxn];
double INF;
​
//判断是否满足条件
bool C(double x)
{
    int num = 0;
    for (int i = 0; i < N; i++)
    {
        num += (int)(L[i] / x);        //求每条绳子按照x长度切出来的绳子数量 是否大于等于 K
    }
    return num >= K;
}
​
void solve()
{
    //初始化解的范围
    double lb = 0, ub = INF;           // INF > MAX_L
//重复循环,直到解的范围足够小
    for (int i = 0; i < 100; i++)
    {
        double mid = (lb + ub) / 2;
        if (C(mid)) {
            lb = mid;                  //将x的最小边界 设置为 mid
        }
        else {
            ub = mid;               
        }
    }
​
    printf("%.2f\n",  floor(ub * 100) / 100);     //保留两位小数
}
​
void input()
{
    cin >> N >> K;
    for (int i = 0; i < N; i++)
    {
        cin >> L[i];
        if (INF < L[i]) {
            INF = L[i];        //求出x最大可能值的右边界
        }
    }
    ++INF;
}
​
int main()
{
    input();
    solve();
    return 0;
}
套用模板,求解蓝桥杯原题
2017第八届蓝桥杯省赛第九题:分巧克力

 
标题: 分巧克力
​
    儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
    小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。
​
    为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:
​
    1. 形状是正方形,边长是整数  
    2. 大小相同  
​
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
​
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
​
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)  
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000) 
输入保证每位小朋友至少能获得一块1x1的巧克力。   
​
输出
输出切出的正方形巧克力最大可能的边长。
​
样例输入:
2 10  
6 5  
5 6  
​
样例输出:
2
​
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗  < 1000ms

#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
​
/*
2 10  
6 5  
5 6  
*/
const int maxn = 100000 + 20;
int N, K;
int INF;
struct Eat {
    int Hi,
        Wi;
    Eat(int h = 0, int w = 0) : Hi(h), Wi(w) {}
} Fs[maxn];
​
bool C(int x)
{
    int num = 0;
    for (int i = 0; i < N; i++)
    {
        num += ((Fs[i].Hi / x) * (Fs[i].Wi / x));
        if (num >= K) {
            return true;
        }
    }
    return false;
}
​
void solve()
{
    //初始化解的范围
    int lb = 0, ub = INF;
    
    //重复循环, 直到解的范围足够小
    for (int i = 0; i < 100; i++)
    {
        int mid = (lb + ub) / 2;
        if (C(mid)) {
            lb = mid ;
        }
        else {
            ub = mid;
        }
    }
    cout << lb << endl;
}
​
void input()
{
    int tmp = 0;
    cin >> N >> K;
    for (int i = 0; i < N; i++)
    {
        cin >> Fs[i].Hi >> Fs[i].Wi;
        tmp = max(Fs[i].Hi, Fs[i].Wi);
        if (INF < tmp) {
            INF = tmp;
        }
    }
    INF++;
}
​
int main()
{
    input();
    solve();
    return 0;
}

练习:Codevs 1766 装果子

 

 在自己搭的博客用md写的: https://douzujun.github.io/page/%E7%AE%97%E6%B3%95%E7%AC%94%E8%AE%B0/STL%E5%9F%BA%E7%A1%80%20%E5%92%8C%20%E7%AE%80%E5%8D%95%E7%9A%84%E8%B4%AA%E5%BF%83%E9%97%AE%E9%A2%98.html

posted @ 2017-12-21 10:49 douzujun 阅读( ...) 评论( ...) 编辑 收藏
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值