如何选择机器学习模型进行数据分析_简要笔记

本文简要介绍了如何在数据分析中选择合适的机器学习模型,包括监督学习、非监督学习和强化学习。在监督学习中,涉及分类和回归问题;非监督学习关注聚类和降维。选择模型的大体流程包括生成合成数据、特征缩放、PCA降维以及使用K-means聚类。此外,还提到了训练、验证和测试数据集的重要性。
摘要由CSDN通过智能技术生成

如何选择机器学习模型进行数据分析_简要笔记

  • Supervised 监督学习

  • Unsuperivised 非监督学习

  • Reinforcement 强化学习(alphago,我将Action给环境,环境给我Reward))

  • Supervised Learning

    • Classification 分类
    • Regression 回归
  • Unsupervised Learning

    • Clustering 聚类
    • Compression 降维(压缩)
  • 如何选择一个模型

  • 大体流程
```
//训练集x(N * d), y(N * 1); 测试集x, y(同分布的)
train_x, train_y, test_x, test_y = getData()  // MNIST

model = somemodel()            // SVM(),LASSO()
model.fit(train_x, train_y)       // 学习参数
predictions = model.predict(test_x)  // 预测模型

//验证模型
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值