本篇文章主要介绍毫米波雷达的基础知识中的角度估计,对于本篇文章主要回答5个问题
1.在雷达的前方,如何估计前方一个物体的角度
2.角度测量的准确性
3.如何测量多个物体的角度
4.雷达可测的角度的视场最大值为多少
5.角度分辨率取决于什么因素
估计雷达前面一个物体的角度
估计一个物体的角度,最少需要两根接收天线
发射天线发送一个chirp,经过物体发射后信号,信号分别被第一根天线和第二根天线接收,第一根天线接收的距离为
d
d
d,第二根天线接收的距离为
d
+
Δ
d
d+\Delta d
d+Δd,额外的距离会产生相位差,
ω
=
2
π
Δ
d
λ
\omega = \frac{2\pi \Delta d}{\lambda}
ω=λ2πΔd
假设两根天线接收回来的信号是平行的,如下图:
则
Δ
d
=
d
s
i
n
(
θ
)
\Delta d = dsin(\theta)
Δd=dsin(θ),则公式
ω
=
2
π
Δ
d
λ
=
2
π
d
s
i
n
(
θ
)
λ
⇒
θ
=
s
i
n
−
1
(
λ
ω
2
π
d
)
\omega = \frac{2\pi \Delta d}{\lambda} = \frac{2\pi dsin(\theta)}{\lambda} \Rightarrow \theta=sin^{-1}(\frac{\lambda \omega}{2\pi d})
ω=λ2πΔd=λ2πdsin(θ)⇒θ=sin−1(2πdλω)
角度测量的准确性
测量角度的公式为: ω = 2 π d s i n ( θ ) λ \omega = \frac{2\pi dsin(\theta)}{\lambda} ω=λ2πdsin(θ),在 ω \omega ω和 θ \theta θ之间的关系不是线性的
在这个图中,当
θ
\theta
θ趋近于0时,
s
i
n
(
θ
)
sin(\theta)
sin(θ)对
θ
\theta
θ的变化是非常敏感的,
θ
\theta
θ的微小变化可能会导致
s
i
n
(
θ
)
sin(\theta)
sin(θ)的同等大小的变化,但是
s
i
n
(
θ
)
sin(\theta)
sin(θ)的敏感性会随
θ
\theta
θ的增大的敏感性减小,当
θ
\theta
θ接近于
90
°
90\degree
90°时,
s
i
n
(
θ
)
sin(\theta)
sin(θ)对
θ
\theta
θ的变化是变得非常不敏感,因此随着
θ
\theta
θ角度的增加,角度的估算就会更容易产生误差
总结:
ω
\omega
ω对
θ
\theta
θ灵敏度随着
θ
\theta
θ的增大而减小(
θ
\theta
θ从0到90度)
雷达的最大角视场
物体在雷达的左边,向量逆时针转
物体在雷达的右边,向量顺时针转
当向量转的角度超过180度时,就会产生模糊,不知道物体是在雷达的左侧还是在雷达的右侧
因此,角度的最大无模糊为:
∣
ω
∣
<
180
°
|\omega|<180\degree
∣ω∣<180°
2
π
d
s
i
n
(
θ
)
λ
<
π
⇒
θ
<
s
i
n
−
1
(
λ
2
d
)
\frac{2\pi dsin(\theta)}{\lambda} <\pi \Rightarrow \theta<sin^{-1}(\frac{\lambda}{2 d})
λ2πdsin(θ)<π⇒θ<sin−1(2dλ)
因此雷达的最大角视场可能为
−
+
90
°
^+_-90\degree
−+90°
测量雷达前方多个距离和速度相同的物体
加入雷达前方有两个物体,他们的距离和速度相同,这样两个物体将处于2D-FFT中相同位置的距离速度单元,如下图所示:
之间简单的相位比较就不再适用
解决方案是:将RX天线的数量从两个增加到N个
经过FFT(angle-FFT)后,得到下图:
则:
θ
1
=
s
i
n
−
1
(
λ
ω
1
2
π
d
)
\theta_1=sin^{-1}(\frac{\lambda \omega_1}{2 \pi d})
θ1=sin−1(2πdλω1)和
θ
2
=
s
i
n
−
1
(
λ
ω
2
2
π
d
)
\theta_2=sin^{-1}(\frac{\lambda \omega_2}{2 \pi d})
θ2=sin−1(2πdλω2)
ω
1
\omega_1
ω1和
ω
2
\omega_2
ω2分别对应于两个物体之间的接收天线的相位差
得到结果是弧度,最后还应该乘以180度,得到角度
角度分辨率
角度分辨率(
θ
r
e
s
\theta_{res}
θres)是两个物体在ange-FFT中作为单独峰值出现的最小角度的问题
Δ
ω
=
2
π
d
λ
(
s
i
n
(
θ
+
Δ
θ
)
−
s
i
n
(
θ
)
)
=
2
π
d
λ
c
o
s
(
θ
)
Δ
θ
\Delta \omega = \frac{2\pi d}{\lambda}(sin(\theta + \Delta \theta)-sin(\theta))=\frac{2\pi d}{\lambda}cos(\theta)\Delta\theta
Δω=λ2πd(sin(θ+Δθ)−sin(θ))=λ2πdcos(θ)Δθ,因为
s
i
n
(
θ
+
Δ
θ
)
−
s
i
n
(
θ
)
Δ
θ
=
c
o
s
(
θ
)
\frac{sin(\theta + \Delta \theta)-sin(\theta)}{\Delta \theta}=cos(\theta)
Δθsin(θ+Δθ)−sin(θ)=cos(θ),这是利用导数的概念
又因为:
Δ
ω
>
2
π
N
\Delta \omega > \frac{2\pi}{N}
Δω>N2π
推出
2
π
d
λ
c
o
s
(
θ
)
Δ
θ
>
2
π
N
⇒
Δ
θ
>
λ
N
d
c
o
s
(
θ
)
\frac{2\pi d}{\lambda}cos(\theta)\Delta\theta>\frac{2\pi}{N} \Rightarrow \Delta \theta>\frac{\lambda}{Ndcos(\theta)}
λ2πdcos(θ)Δθ>N2π⇒Δθ>Ndcos(θ)λ
因此角度分辨率为
θ
r
e
s
=
λ
N
d
c
o
s
(
θ
)
\theta_{res}=\frac{\lambda}{Ndcos(\theta)}
θres=Ndcos(θ)λ
d
d
d为接收天线之间的距离,一般情况为
d
=
λ
2
d=\frac{\lambda}{2}
d=2λ,
θ
\theta
θ的值一般取0,则
θ
r
e
s
=
2
N
\theta_{res}=\frac{2}{N}
θres=N2
角度估计的流程
对每一个接收天线接收到的数据做2D-FFT,如下图:
对天线上的峰值做FFT来估计角度值
参考文献:
- 《mmwaveSensing-FMCW-offlineviewing》