矩阵分析与应用-04-向量空间、内积空间与线性映射01

        虽然许多工程问题也可以不使用线性空间进行研究,但是线性空间的使用却可以给问题的描述带来诸多的方便。本质上讲,线性空间是某--类事物在矩阵代数里的一个抽象的集合表示,线性映射或线性变换则反映线性空间中元素间最基本的线性联系,它们为线性函数的研究提供了极大的方便。可以说,线性代数就是研究线性空间和线性变换理论的数学分支。

集合的基本概念

1.与集合运算有关的几个数学符号

\forall 表示对所有

x\in A  表示x属于集合A,即x是集合A的一个元素

x\notin A  表示x不属于集合A,即x不是集合A的一个元素

\ni  表示使得

\exists  表示存在

2.集合的基本运算

A\subseteq B 读作集合A包含于集合BAB的一个子集,即A中每一个元素都是B的元素。

A \subset B  称AB的一个真子集。符号B \supset A  表示为B包含ABA的超集。

\varnothing  表示没有任何元素的集合,又称空集。

A = B  表示A等于B,即A\subseteq BB\supseteq A,或x\in Ax\in B

A \neq B  表示A不属于B,反过来B也不属于A

A\cup B  表示AB的并集

A\cap B  表示AB的交集

Z=A+B  表示AB的和集

A-B  表示集合差

A^c = X-A  表示在A集合X中的补集

X \times Y  表示XY的笛卡尔积

向量空间

定义1  以向量为元素的集合V称为向量空间,若加法运算定义为两个向量之间的加法,乘法运算定义为向量与标量域S中的标量之间的乘法,并且对于向量集合V中的向量x, y, w和标量域S中的标址a1, a2,以下两个闭合性和关于加法及乘法的八个公理(axiom)[也称公设(postulate)或定律(law)]满足:

闭合性:

1.若x \in Vy\in V,则x + y \in V,即V在加法下是闭合的,简称加法的闭合性;

2.若a_1是一个标量,y\in V,则a_1y \in V,即V在标量乘法下是闭合的,简称标量乘法的闭合性。

 加法的公理:

1. x+y=y+x\forall x,y \in V,称为加法的交换律;

2.x+(y+w)=(x+y)+w ,\forall x,y,w \in V,称为加法的结合律;

3.在V中存在一个零向量O、使得对于任意向量y ∈V,恒有y+0= y(零向量的存在性)

4.给定一个向量y \in V,存在另一个向量-y \in V使得y+(-y)=0=(-y)+y(负向量的存在性)。

标量乘法的公理

1.a(by) = (ab)y 对所有向量y和所有标量a,b成立,称为标量乘法的结合律;

2.a(x + y) =ax+ay对所有向量a, y ∈V和标量a成立,称为标量乘法的分配律;

3. (a+ b)y = ay+ by对所有向量g和所有标量α,b成立(标量乘法的分配律);

4.1g = y对所有y ∈V成立,称为标量乘法的单位律。

定义2  令V和w是两个向量空间,若W是V中一个非空的子集合,则称子集合W是V的个子空间。

定理1  如果V是一个向量空间,则

(1)零向量0是唯一的。

(2)对每一个向量y,加法的逆运算-y是唯一的。

(3)对每一个向量y,恒有0y = 0。

(4)对每一个标量a,恒有a0= 0。

(5)若ay =0,则a=0或者y = 0。

(6)(-1)y = -y。

定理2  P”的子集合W是R”的子空间,当且仅当以下三个条件满足:

(1)每当向量x, y属于W,则a +y 也属于W,即满足加法的闭合性:

(2)每当向量x属于W,且 a为标量时,则ax属于W,即满足与标量乘积的闭合性。

(3)零向量0是W的元素。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值