矩阵论 第一章 基础概念和定律

本文介绍了线性空间的概念,包括数域、加群、线性空间的定义及其性质,进一步讨论了线性变换、矩阵表示、同构、直和、秩、特征值和特征向量等核心概念。此外,还涵盖了内积空间、酉空间的基本属性和定律,以及特征值和特征向量的计算与性质。
摘要由CSDN通过智能技术生成

数学基础之矩阵篇

理论概念: 思考的时候可能有用

数域: 一个数集对四则运算封闭(四则运算的结果仍在数集内)则称之为数域. Q,R,C都是数域,而Z不是数域因为对除法不封闭.

加群: 一个非空集合V, 若V中有一种规则称之为加法"+", 满足

  1. 交换律 a+b=b+a
  2. 结合律 a+b+c=a+(b+c)
  3. 存在零元 (任意u∈V有u+0=u) 
  4. 存在唯一负元 (任意u∈V有唯一-u使 u + (-u) =0).

则称V在加法运算下成一个加群.记为(V,+)

线性空间(或称向量空间): 对于加群 (V,+) 和数域 F,若有F对V的数乘规则,使 任意a∈F, u∈V, 有V中唯一元 au 与之对应,且满足:

  1. 数乘对加法的分配律 a(u+v) = au+av
  2. 数乘对数的分配率 (a+b)u = au+bu
  3. 数乘结合律 abu = a(bu)
  4. 数1特性 1u=u

则称V是数域F上的线性空间, V中的元称为向量,F中的元称为标量.

由此可知线性空间V就是一个能构成加群的非空向量集合, 满足和标量的运算关系. 说V是F的一个线性空间,就是说F中标量作用于向量空间V上满足以上关系.

线性变换:V,W是F上的线性空间, 映射T: V→W如果具有以下性质(即保持运算): 任意a,b∈F, x,y∈V, 有T(ax+by) = aTx + bTy,则称T为V到W的一个线性映射. 而当V=W,则称T为V上的一个线性变换.线性变换可以用矩阵来表示, 一组基下,线性变换和矩阵是一一对应的关系. 不同基下,同一个线性变换的矩阵相似.

同构: V,W是F上的线性空间, 若存在映射f:V→W 满足: 1) f一一对应; 2) f是一个线性映射(满足保持运算性质). 则称V和W是同构的.同构空间维数相同.

直和: 如果W1和W2的和空间 W1+W2 中任意向量均唯一地表示成W1中一个和W2中一个向量之和,则W1+W2称为W1与W2的直和. 直和 等价于 W1+W2中零元表示法唯一  等价于 W1∩W2={0} 等价于 dim(W1+W2) = dimW1 + dimW2.

秩, 特征值和特征向量不用解释了.

等价: A经过有限次初等变换得到B则A,B等价.


内积空间:

设V是R上的线性空间,若任意x,y∈V有一种规则使之对应一个实数, 用(x,y)表示,称之为内积,满足:

  1. 对称性: (x,y)=(y,x)
  2. 可加性: (x+y, z) = (x,z)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值