数学基础之矩阵篇
理论概念: 思考的时候可能有用
数域: 一个数集对四则运算封闭(四则运算的结果仍在数集内)则称之为数域. Q,R,C都是数域,而Z不是数域因为对除法不封闭.
加群: 一个非空集合V, 若V中有一种规则称之为加法"+", 满足
- 交换律 a+b=b+a
- 结合律 a+b+c=a+(b+c)
- 存在零元 (任意u∈V有u+0=u)
- 存在唯一负元 (任意u∈V有唯一-u使 u + (-u) =0).
则称V在加法运算下成一个加群.记为(V,+)
线性空间(或称向量空间): 对于加群 (V,+) 和数域 F,若有F对V的数乘规则,使 任意a∈F, u∈V, 有V中唯一元 au 与之对应,且满足:
- 数乘对加法的分配律 a(u+v) = au+av
- 数乘对数的分配率 (a+b)u = au+bu
- 数乘结合律 abu = a(bu)
- 数1特性 1u=u
则称V是数域F上的线性空间, V中的元称为向量,F中的元称为标量.
由此可知线性空间V就是一个能构成加群的非空向量集合, 满足和标量的运算关系. 说V是F的一个线性空间,就是说F中标量作用于向量空间V上满足以上关系.
线性变换:V,W是F上的线性空间, 映射T: V→W如果具有以下性质(即保持运算): 任意a,b∈F, x,y∈V, 有T(ax+by) = aTx + bTy,则称T为V到W的一个线性映射. 而当V=W,则称T为V上的一个线性变换.线性变换可以用矩阵来表示, 一组基下,线性变换和矩阵是一一对应的关系. 不同基下,同一个线性变换的矩阵相似.
同构: V,W是F上的线性空间, 若存在映射f:V→W 满足: 1) f一一对应; 2) f是一个线性映射(满足保持运算性质). 则称V和W是同构的.同构空间维数相同.
直和: 如果W1和W2的和空间 W1+W2 中任意向量均唯一地表示成W1中一个和W2中一个向量之和,则W1+W2称为W1与W2的直和. 直和 等价于 W1+W2中零元表示法唯一 等价于 W1∩W2={0} 等价于 dim(W1+W2) = dimW1 + dimW2.
秩, 特征值和特征向量不用解释了.
等价: A经过有限次初等变换得到B则A,B等价.
内积空间:
设V是R上的线性空间,若任意x,y∈V有一种规则使之对应一个实数, 用(x,y)表示,称之为内积,满足:
- 对称性: (x,y)=(y,x)
- 可加性: (x+y, z) = (x,z)