5 大数定律及中心极限定理

Chapter 5 大数定律及中心极限定理

5.1 大数定律

定义5.1 Y 1 Y_1 Y1, Y 2 Y_2 Y2, … … Y n Y_n Yn, … … 为一个随机变量序列,c为一常数,若对于 ∀ ε > 0 \forall\varepsilon>0 ε>0 ,均有:
lim ⁡ x → ∞ P { ∣ Y n − c ∣ ≥ ε } = 0 \displaystyle\lim_{x \to \infty}{P\{|Y_n-c|\geq\varepsilon\}}=0 xlimP{Yncε}=0
成立,则称随机变量序列 { Y n , n ≥ 1 } \{Y_n,n\geq1\} {Yn,n1}依概率收敛于c,记为 Y n ⟶ P c Y_n \stackrel{P}{\longrightarrow}c YnPc, 当 n → ∞ n\rightarrow\infty n .

定理 (Chebyshev不等式) 设随机变量具有数学期望 E ( X ) = μ E(X)=\mu E(X)=μ, 方差 D ( X ) = σ 2 D(X)=\sigma^2 D(X)=σ2,则对于任意 ε > 0 \varepsilon>0 ε>0, 都有:
P { ∣ X − μ ∣ ≥ ε } ≤ σ 2 ε 2 P\{|X-\mu|\geq\varepsilon\}\leq\dfrac{\sigma^2}{\varepsilon_2} P{Xμε}ε2σ2
定理的等价形式:

P { ∣ X − μ ∣ < ε } ≥ 1 − σ 2 ε 2 P\{|X-\mu|<\varepsilon\}\geq1-\dfrac{\sigma^2}{\varepsilon_2} P{Xμ<ε}1ε2σ2
适用范围:对于期望、存在的随机变量(范围广,但结果比较粗糙)

定理1 (Bernoulli大数定律) n A n_A nA为n重Bernoulli试验中事件A发生的次数, p ( 0 < p < 1 ) p(0<p<1) p(0<p<1)为事件A在每次试验中发生的概率,则对于$ \varepsilon > 0$,有
lim ⁡ n → + ∞ P ( ∣ n A n − p ∣ ⩾ ε ) = 0 \displaystyle\lim_{n \rightarrow +\infty} P\left( \left\vert \dfrac{n_A}{n} - p \right\vert \geqslant \varepsilon \right) = 0 n+limP(nnApε)=0
即事件A发生的频率 n A n \dfrac{n_A}{n} nnA依概率收敛到A发生的概率 p p p

定理2 (切比雪夫大数定律的推论) X 1 , X 2 , … , X n , … X_1, X_2, …,X_n,… X1,X2,,Xn,为相互独立的随机变量,且具有相同的期望 μ \mu μ, 相同的方差 σ 2 \sigma^2 σ2, 那么
1 n ∑ i = 1 n X i ⟶ P μ , ( n → ∞ ) \dfrac{1}{n}\displaystyle\sum_{i=1}^{n}X_i\stackrel{P}{\longrightarrow}\mu, (n\rightarrow\infty) n1i=1nXiPμ,(n)
定理3 (辛钦大数定理) X 1 , X 2 , … , X n , … X_1, X_2, …,X_n,… X1,X2,,Xn,为相互独立的随机变量,且其期望存在,记为 μ {\mu} μ, 那么
1 n ∑ i = 1 n X i ⟶ P μ , ( n → ∞ ) \dfrac{1}{n}\displaystyle\sum_{i=1}^{n}X_i\stackrel{P}{\longrightarrow}\mu, (n\rightarrow\infty) n1i=1nXiPμ,(n)

5.2 中心极限定理

定理1(独立同分布的中心极限定理) 设随机变量 X 1 , X 2 , … , X n , … X_1, X_2, …,X_n,… X1,X2,,Xn,,相互独立且同分布, E ( X i ) = μ E(X_i)=\mu E(Xi)=μ, D ( X i ) = σ 2 D(X_i)=\sigma^2 D(Xi)=σ2, i = 1 , 2 , … i=1,2,… i=1,2,,则对于充分大的n,有 ∑ i = 1 n X i ∼ 近 似 N ( n μ , n σ 2 ) \displaystyle\sum_{i=1}^{n}X_i \stackrel{近似}{\sim}N(n\mu,n\sigma^2) i=1nXiN(nμ,nσ2).此时
P ( a < ∑ i = 1 n X i ≤ b ) ≈ Φ ( b − n μ n σ ) − Φ ( a − n μ n σ ) P(a<\displaystyle\sum_{i=1}^{n}X_i\leq b)\approx\Phi(\dfrac{b-n\mu}{\sqrt{n} \sigma})-\Phi(\dfrac{a-n\mu}{\sqrt{n} \sigma}) P(a<i=1nXib)Φ(n σbnμ)Φ(n σanμ)
定理3 (De Moivre-Laplace定理) n A n_A nA为n重Bernoulli试验中事件A发生的次数, p ( 0 < p < 1 ) p(0<p<1) p(0<p<1)为事件A在每次试验中发生的概率,则对于充分大的 n n n
n A ∼ N ( n p , n p ( 1 − p ) ) n_A \sim N(np, np(1-p)) nAN(np,np(1p))

即对于二项分布 B ( n , p ) B(n,p) B(n,p),当 n n n充分大的时候,可用正态分布来近似。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值