时间序列分析(一)

金融时间序列分析(第一讲)

资料

Penn State: Applied Time Series Analysis
这里写图片描述

蔡瑞胸教授的主页:http://faculty.chicagobooth.edu/ruey.tsay/teaching/

FinTS是与《金融时间序列分析》配套的R package:

install.packages("FinTS")
library("FinTS")
help(package="FinTS")

##第2章 线性时间序列分析及其应用
金融时间序列是研究资产价值随时间演变的理论和实践。

2.1 平稳性

  • 严平稳(strictly stationary):相同的联合分布,要求 { r t 1 , ⋯   , r t k } \{r_{t_1},\cdots,r_{t_k}\} {rt1,,rtk}在时间的平移变换下保持不变。
    这里写图片描述
  • 弱平稳(weakly stationary): r t r_t rt的均值和协方差 c o v ( t t , r t − l ) cov(t_{t},r_{t-l}) cov(tt,rtl)不随时间而改变
    (a) E ( r t ) = μ E(r_t)=\mu E(rt)=μ, which is a constant
    (b) c o v ( r t , r t − l ) = γ l cov(r_t,r_{t-l})=\gamma_l cov(rt,rtl)=γl, which only depends on l l l

若平稳性意味着数据的时间图显示出 T T T个值围绕一个常数水平上下波动,这使得我们对于时间序列的预测成为可能。通常我们假设asset return series是弱平稳的

自相关函数(Autocorrelation Function, ACF)

考虑一个弱平稳的收益序列 { r t } \{r_t\} {rt} r t r_t rt r t − l r_{t-l} rtl之间的相关系数称为 r t r_t rt间隔为 l l l的自相关系数:
ρ l = c o v ( r t , r t − l ) v a r ( r t ) v a r ( r t − l ) = c o v ( r t , r t − l ) v a r ( r t ) = γ l γ 0 ρ l ^ = ∑ t = l + 1 T ( r t − r ˉ ) ( r t − l − r ˉ ) ∑ t = 1 T ( r t − r ˉ ) 2 \rho_l=\frac{cov(r_t,r_{t-l})}{\sqrt{var(r_t)var(r_{t-l})}}=\frac{cov(r_t,r_{t-l})}{var(r_t)}=\frac{\gamma_l}{\gamma_0}\\ \hat{\rho_l}=\frac{\sum_{t=l+1}^{T}(r_t-\bar{r})(r_{t-l}-\bar{r})}{\sum_{t=1}^{T}(r_t-\bar{r})^2} ρl=var(rt)var(rtl) cov(rt,rtl)=var(rt)cov(rt,rtl)=γ0γlρl^=t=1T(rtrˉ)2t=l+1T(rtrˉ)(rtlrˉ)
ρ ^ l \hat{\rho}_l ρ^l is asymptotically normal with mean zero and variance 1/T。

2.3 白噪声和线性时间序列
白噪声

如果 { r t } \{r_t\} {rt}是一个具有有限均值和方差的独立同分布随机变量序列,则称之为白噪声。特别地,如果 { r t } \{r_t\} {rt}还服从均值为0,方差为 σ 2 \sigma^2 σ2的正态分布,则称其为高斯白噪声。对于白噪声序列,所有的自相关函数都为0

线性时间序列

r t = μ + ∑ i = 0 ∞ ψ i a t − i = μ + a t + ψ 1 a t − 1 + ψ 2 a t − 2 + ⋯ r_t=\mu+\sum_{i=0}^{\infty}\psi_ia_{t-i} =\mu+a_t+\psi_1a_{t-1}+\psi_2a_{t-2}+\cdots rt=μ+i=0ψiati=μ+at+ψ1at1+ψ2at2+
其中 { a t } \{a_t\} {at}是白噪声, ψ 0 = 1 \psi_0=1 ψ0=1
E ( r t ) = μ , V a r ( r t ) = σ a 2 ∑ i = 0 ∞ ψ i 2 E(r_t)=\mu,\quad Var(r_t)=\sigma_a^2\sum_{i=0}^{\infty}\psi_i^2 E(rt)=μ,Var(rt)=σa2i=0ψi2

2.4 简单的自回归模型

AR(1) Model

\begin{align*}
&r_t=\phi_0+\phi_1r_{t-1}+a_t\
\Longrightarrow \quad & E(r_t|r_{t-1})=\phi_0+\phi_1r_{t-1},\
\quad &Var(r_t|r_{t-1})=Var(a_t)=\sigma_a^2
\end{align*}

{ a t } \{a_t\} {at}为均值为0,方差为 σ a 2 \sigma_a^2 σa2的白噪声序列。
Given the past return r t − 1 r_{t-1} rt1, the current return is centered around ϕ 0 + ϕ 1 r t − 1 \phi_0+\phi_1r_{t-1} ϕ0+ϕ1rt1, with standard deviation σ a \sigma_a σa.

AR§
r t = ϕ 0 + ϕ 1 r t − 1 + ϕ 2 r t − 2 + ⋯ + ϕ p r r − p + a t r_t=\phi_0+\phi_1r_{t-1}+\phi_2r_{t-2}+\cdots+\phi_pr_{r-p}+a_t rt=ϕ0+ϕ1rt1+ϕ2rt2++ϕprrp+at

2.4.1 AR模型的性质

Property

\begin{align*}
&E(r_t)=\phi_0+\phi_1E(r_{t-1})\
\Longrightarrow\quad &\mu=\phi_0+\phi_1\mu\
\Longrightarrow\quad &\mu=\frac{\phi_0}{1-\phi_1}\
\Longrightarrow \quad&r_t-\mu=\phi_1(r_{t-1}-\mu)+a_t
\end{align*}

平稳性条件为 ∣ ϕ 1 ∣ &lt; 1 |\phi_1|&lt;1 ϕ1<1
\begin{align*}
r_t-\mu&=\phi_1(r_{t-1}-\mu)+a_t\
&=a_t+\phi_1a_{t-1}+\phi_1^2a_{t-2} +\cdots\
&=\sum_{i=0}{\infty}\phi_1ia_{t-i}\
\Longrightarrow \quad& cov(r_t,a_{t+1})=E[(r_t-\mu)a_{t+1}]=0\
&cov(r_{t-1},a_{t})=E[(r_{t-1}-\mu)a_{t}]=0\
& cov(a_t,r_t)=E(a_t(r_t-\mu))=E(a_t\phi_1(r_{t-1}-\mu)+a_t^2)\
&\quad\quad=Var(a_t)=\sigma_a^2
\end{align*}
即解释变量 r t − 1 r_{t-1} rt1与残差 a t a_t at是不相关的。

\begin{align*}
\gamma_l&=cov(r_t,r_{t-l})\
&=E[(r_t-\mu)(r_{t-l}-\mu)]\
&=E[(\phi_1(r_{t-1}-\mu)+a_t)(r_{t-l}-\mu)]\
&=\phi_1E[(r_{t-1}-\mu)(r_{t-l}-\mu)] \quad for \text{ }l>0
\end{align*}

AR(1)的自相关函数

γ l = { ϕ 1 γ 1 + σ a 2 i f   l = 0 ϕ 1 γ l − 1 i f   l &gt; 0 \gamma_l=\left\{ \begin{array}{rcl} \phi_1\gamma_1+\sigma_a^2 &amp; &amp; if \text{ }l=0\\ \phi_1\gamma_{l-1} &amp; &amp; if \text{ }l&gt;0\\ \end{array} \right. γl={ϕ1γ1+σa2ϕ1γl1if l=0if l>0

AR(2) Model

r t = ϕ 0 + ϕ 1 r t − 1 + ϕ 2 r t − 2 + a t r t − μ = ϕ 1 ( r t − 1 − μ ) + ϕ 2 ( r t − 2 − μ ) + a t r_t=\phi_0+\phi_1r_{t-1}+\phi_2r_{t-2}+a_t\\ r_t-\mu=\phi_1(r_{t-1}-\mu)+\phi_2(r_{t-2}-\mu)+a_t rt=ϕ0+ϕ1rt1+ϕ2rt2+atrtμ=ϕ1(rt1μ)+ϕ2(rt2μ)+at
自相关函数:
γ l = ϕ 1 γ l − 1 + ϕ 2 γ l − 2 \gamma_l=\phi_1\gamma_{l-1}+\phi_2\gamma_{l-2} γl=ϕ1γl1+ϕ2γl2, for l &gt; 0 l&gt;0 l>0

模型的检验

如果模型是充分的,残差应该是白噪声序列。

2.5 简单滑动平均模型

MA(1)
r t = c 0 + a t − θ 1 a t − 1 r_t=c_0+a_t-\theta_1 a_{t-1} rt=c0+atθ1at1
或者
r t = c 0 + ( 1 − θ 1 B ) a t r_t=c_0+(1-\theta_1 B)a_t rt=c0+(1θ1B)at

MA(q)
r t = c 0 + a t − θ 1 a t − 1 − θ 2 a t − 2 − ⋯ − θ q a t − q r_t=c_0+a_t-\theta_1a_{t-1}-\theta_2a_{t-2}-\cdots-\theta_qa_{t-q} rt=c0+atθ1at1θ2at2θqatq

2.6 简单的ARMA模型

ARMA(1,1)
r t − ϕ 1 r t − 1 = ϕ 0 + a t − θ 1 a t − 1 r_t-\phi_1 r_{t-1}=\phi_0+a_t-\theta_1a_{t-1} rtϕ1rt1=ϕ0+atθ1at1

ARMA(p,q)
r t = ϕ 0 + ∑ i = 1 p ϕ i r t − i + a t − ∑ i = 1 q θ i a t − i r_t=\phi_0+\sum_{i=1}^{p}{\phi_i}r_{t-i}+a_t-\sum_{i=1}^{q}\theta_ia_{t-i} rt=ϕ0+i=1pϕirti+ati=1qθiati

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值