NSL-KDD数据集详细介绍及下载

本文探讨了数据质量对机器学习性能的影响,重点介绍了入侵检测领域的NSL-KDD数据集,其包含了丰富的特征和标签用于研究和比较不同的检测方法。NSL-KDD数据集的特点、特征类型和使用方法对特征工程实践具有指导意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接:https://pan.baidu.com/s/1hX4xpVPo70vwLIo0gdsM8A?pwd=q88b 
提取码:q88b

        一般认为数据质量决定了机器学习性能的上限,而机器学习模型和算法的优化最多 只能逼近这个上限。因此在数据采集阶段需要对采集任务进行规划。在数据采集之前, 主要是从数据可用性、采集成本、特征可计算性、存储成本的角度进行分析,以获得尽可能 多的样本特征为基本目标。

        入侵检测的数据采集方法取决于入侵检测系统的类型,即网络入侵检测和主机入侵 检测系统。对于网络入侵检测,采用网络嗅探、网络数据包截获等方法获得流量数据。对 于主机入侵检测,采用的方法比较灵活,既可以是操作系统的各种日志,也可以是某些应 用系统的日志,还可以通过开发驻留于主机的应用软件等方法获得主机数据。因此,与网 络连接、网络请求有关的特征,以及各类日志中的特征都是入侵检测常用的数据源。

        这里介绍入侵检测领域常用的数据集,包括 NSL-KDD等,这些公开的数据集为帮助 研究人员比较不同的入侵检测方法提供了基准。NSL-KDD 数据集是通过网络数据包提 取而成,由 M.Tavallaee等于2009年构建,它克服了更早之前 KDDCup99数据集中存 在的一些问题。

NSL-KDD共使用41个特征来描述每条流量,这些特征可以分为三组。

(1)基本特征(basic features),从 TCP/IP连接中提取。

(2)流量特征(traffic features),与同一主机或同一服务相关。

(3)内容特征(content features),反映了数据包中的内容。

除此之外,每条流量都带有一个标签,即normalanomaly,表示相应的流量为正常 或异常。因此 NSL-KDD是一

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值