RSOME: Robust Stochastic Optimization Made Easy
Adaptive Robust Lot-Sizing
In this example, we consider a lot-sizing problem described in Bertsimas and de Ruiter (2016). In a network with N N N stores, the stock allocation x i x_i xi for each store i i i is determined prior to knowing the realization of the demand at each location. The demand, denoted by the vector d d d, is uncertain and assumed to be in a budget uncertainty set
U = { d : 0 ≤ d ≤ d max e , e ⊤ d ≤ Γ } . \mathcal{U}=\left\{\pmb{d}: \pmb{0}\leq \pmb{d} \leq d_{\text{max}}\pmb{e}, \pmb{e}^{\top}\pmb{d} \leq \Gamma\right\}. U={ ddd:000≤ddd≤dmaxeee,eee⊤ddd≤Γ}.
After the demand realization of demand is observed, stock y i j y_{ij} yij</