RSOME案例:两阶段鲁棒批量生产优化

该博客介绍了如何运用RSOME库解决一个来自Bertsimas和de Ruiter (2016)的适应性鲁棒批量生产优化问题。问题涉及到在不确定需求的情况下确定库存分配,目标是最小化最坏情况下的总成本,包括存储成本和产品转移成本。通过Python代码展示了模型的实现,并给出了解决方案的示例。
摘要由CSDN通过智能技术生成


RSOME: Robust Stochastic Optimization Made Easy


Adaptive Robust Lot-Sizing

In this example, we consider a lot-sizing problem described in Bertsimas and de Ruiter (2016). In a network with N N N stores, the stock allocation x i x_i xi for each store i i i is determined prior to knowing the realization of the demand at each location. The demand, denoted by the vector d d d, is uncertain and assumed to be in a budget uncertainty set

U = { d : 0 ≤ d ≤ d max e , e ⊤ d ≤ Γ } . \mathcal{U}=\left\{\pmb{d}: \pmb{0}\leq \pmb{d} \leq d_{\text{max}}\pmb{e}, \pmb{e}^{\top}\pmb{d} \leq \Gamma\right\}. U={ ddd:000ddddmaxeee,eeedddΓ}.

After the demand realization of demand is observed, stock y i j y_{ij} yij</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值