RSOME: Robust Stochastic Optimization Made Easy
Adaptive Distributionally Robust Lot-Sizing
In this section, we are using RSOME to replicate numerical case studies presented in Bertsimas et al. (2021). A capacitated network with n n n locations is considered, where each location i i i has an unknown demand d i d_i di, and the demand can be satisfied by the existing local stock x i x_i xi or by transporting an amount y i j y_{ij} yij of units from another location j j j, which is determined after the demand is realized. Such a lot-sizing problem can be written as the following two-stage formulation,
min ∑ i = 1 N c i x i + E [ Q ( x , d ~ ) ] , s.t. 0 ≤ x i ≤ K , i = 1 , 2 , . . . , n \begin{aligned} \min~& \sum\limits_{i=1}^Nc_ix_i + \mathbb{E}\left[Q(\pmb{x}, \tilde{\pmb{d}})\right], \\ \text{s.t.}~ &0 \leq x_i \leq K, & i = 1, 2, ..., n \end{aligned} min s.t. i=1∑Ncixi+E[Q(xxx,ddd~)],0≤xi≤K,i=1,2,...,n
where the recourse problem Q ( x , d ) Q(\pmb{x}, \pmb{d}) Q(xxx,ddd) is written as
Q ( x , z ) = min ∑ i = 1 n ∑ j = 1 n c i j y i j s.t. x i − ∑ j = 1 N y j i + ∑ j = 1 N y i j ≥ d i i = 1 , 2 , . . . , n 0 ≤ y ≤ b . \begin{aligned} Q(\pmb{x}, \pmb{z}) = \min~& \sum\limits_{i=1}^n\sum\limits_{j=1}^nc_{ij}y_{ij} &\\ \text{s.t.}~&x_i - \sum\limits_{j=1}^Ny_{ji} + \sum\limits_{j=1}^Ny_{ij} \geq d_i & i = 1, 2, ..., n \\ &\pmb{0} \leq \pmb{y} \leq \pmb{b}. \end{aligned} Q(xxx,zzz)=min s.t. i=1∑nj=1∑nc