RSOME案例:两阶段分布鲁棒优化用于批量生产问题

本文使用RSOME框架重现了Bertsimas等人(2021)的批量生产问题案例。研究了一个具有不确定需求的网络分配问题,通过线性规划、动态规划和多种方法(如SAA、SP affline、MP affline和Wass SW)进行建模和求解。实验展示了不同方法下库存决策的保守程度。
摘要由CSDN通过智能技术生成


RSOME: Robust Stochastic Optimization Made Easy


Adaptive Distributionally Robust Lot-Sizing

In this section, we are using RSOME to replicate numerical case studies presented in Bertsimas et al. (2021). A capacitated network with n n n locations is considered, where each location i i i has an unknown demand d i d_i di, and the demand can be satisfied by the existing local stock x i x_i xi or by transporting an amount y i j y_{ij} yij of units from another location j j j, which is determined after the demand is realized. Such a lot-sizing problem can be written as the following two-stage formulation,

min ⁡   ∑ i = 1 N c i x i + E [ Q ( x , d ~ ) ] , s.t.  0 ≤ x i ≤ K , i = 1 , 2 , . . . , n \begin{aligned} \min~& \sum\limits_{i=1}^Nc_ix_i + \mathbb{E}\left[Q(\pmb{x}, \tilde{\pmb{d}})\right], \\ \text{s.t.}~ &0 \leq x_i \leq K, & i = 1, 2, ..., n \end{aligned} min s.t. i=1Ncixi+E[Q(xxx,ddd~)],0xiK,i=1,2,...,n

where the recourse problem Q ( x , d ) Q(\pmb{x}, \pmb{d}) Q(xxx,ddd) is written as

Q ( x , z ) = min ⁡   ∑ i = 1 n ∑ j = 1 n c i j y i j s.t.  x i − ∑ j = 1 N y j i + ∑ j = 1 N y i j ≥ d i i = 1 , 2 , . . . , n 0 ≤ y ≤ b . \begin{aligned} Q(\pmb{x}, \pmb{z}) = \min~& \sum\limits_{i=1}^n\sum\limits_{j=1}^nc_{ij}y_{ij} &\\ \text{s.t.}~&x_i - \sum\limits_{j=1}^Ny_{ji} + \sum\limits_{j=1}^Ny_{ij} \geq d_i & i = 1, 2, ..., n \\ &\pmb{0} \leq \pmb{y} \leq \pmb{b}. \end{aligned} Q(xxx,zzz)=min s.t. i=1nj=1nc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值