RSOME: Robust Stochastic Optimization Made Easy
Distributionally Robust Portfolio
Given J J J investment options whose random returns are collectively denoted by a random vector z ~ \tilde{\pmb{z}} zzz~, we choose a portfolio that maximizes the worst-case (i.e., least) expected utility:
max x inf P ∈ F E P [ U ( d ~ ⊤ x ) ] s.t. e ⊤ x = 1 x ∈ R + J . \begin{aligned} \max_{\bm{x}}~& \inf_{\mathbb{P} \in \mathcal{F}}\mathbb{E}_\mathbb{P}\left[U\left(\tilde{\pmb{d}}^{\top}\pmb{x}\right)\right] \\ \text{s.t.} ~& \pmb{e}^{\top}\pmb{x} = 1 \\ & \pmb{x} \in \mathbb{R}^J_+. \end{aligned} xmax s.t. P∈FinfEP[U(ddd~⊤xxx)]eee⊤xxx=1xxx∈R+J.
Here we assume that a commonly used utility function is piecewise affine and concave such that U ( y ) = min k ∈ [ K ] { α k y + β k } U(y) = \min_{k \in [K]} \left\{\alpha_k y + \beta_k\right\} U(y)=mink∈[K]{ αky+βk} with α k ≥ 0 \alpha_k \geq 0 αk≥0. We also assume the mean returns, the variance of each option, as well as the variance of sum of these options are known, captured by the widely used partial cross-moment ambiguity set (Bertsimas et al. 2019, Delgage and Ye 2010, Wiesemann et al. 2014):
G = { P ∈ P 0 ( R J ) ∣ d ~ ∼ R E P [ d ~ ] = μ E P [ ( d ~ j − μ j ) 2 ] ≤ σ j 2 ∀ j ∈ [ J ] E P [ ( e ⊤ ( d ~ − μ ) ) 2 ] ≤ e ⊤ Σ e P [ d ~ ∈ [ d ‾ , d ˉ ] ] = 1 } , \mathcal{G} = \left\{ \mathbb{P} \in \mathcal{P}_0 (\mathbb{R}^J) ~\left|~ \begin{array}{ll} \tilde{\pmb{d}} \sim \mathbb{R} \\ \mathbb{E}_\mathbb{P}[\tilde{\pmb{d}}] = \pmb{\mu} \\ \mathbb{E}_\mathbb{P}[(\tilde{d}_j - \mu_j)^2] \leq \sigma^2_j & \forall j \in [J] \\ \mathbb{E}_\mathbb{P}[(\pmb{e}^\top(\tilde{\pmb{d}}-\pmb{\mu}))^2] \leq \pmb{e}^\top\pmb{\Sigma}\pmb{e} \\ \mathbb{P}[\tilde{\pmb{d}} \in [\underline{\pmb{d}}, \bar{\pmb{d}}]] = 1 \end{array} \right. \right\}, G=⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧P∈P0(RJ) ∣∣∣∣∣∣∣∣∣∣∣ ddd~∼REP[ddd~]=μμμEP[(d~j−μj)2]≤σj2EP[(e