[CS20SI] 2 - Operations

这篇博客深入探讨了TensorFlow中的操作,包括如何使用TensorBoard进行可视化,详细解释了常量(Constants)的概念,特别是广播机制和指定值的常量。还介绍了变量的运用以及数据导入的方法。
摘要由CSDN通过智能技术生成

2.1 TensorBoard

a = tf.constant(2)
b = tf.constant(3)
x = tf.add(a, b)
writer = tf.summary.FileWriter('./graphs', tf.get_default_graph())
writer.close()

2.2 Constants

tf.constant(
    value,
    dtype=None,
    shape=None,
    name='Const',
    verify_shape=False
)
import tensorflow as tf
a = tf.constant([2, 2], name='a')
b = tf.constant([[0, 1], [2, 3]], name='b')

2.2.1 Broadcasting

import tensorflow as tf

#a是一个1x2矩阵,b是一个2x2矩阵
a = tf.constant([2, 2], name='a')
b = tf.constant([[0, 1], [2, 3]], name='b')

#a,b的shape不同,发生broadcasting,a==>2x2
#转化的方法为复制a的最后一个元素,所以a被broadcast成[[2,2],[2,2]]
x = tf.multiply(a, b, name='mul')

with tf.Session() as sess:
	print(sess.run(x))

#  >>  [[0 2]
#      [4 6]]

2.2.2 有特定值的constants

tf.zeros(shape, dtype=tf.float32, name=None)

tf.zeros_like(input_tensor, dtype=None, name=None, optimize=True)

tf.ones(shape, dtype=tf.float32, name=None)

tf.ones_like(input_tensor, dtype=None, name=None, optimize=True)
tf.fill(dims, value, name=None) 
# creates a tensor filled with a scalar value.

tf.fill([2, 3], 8) ==> [[8, 8, 8], [8, 8, 8]]
线性插值,start,stop,num(插值个数)
tf.lin_space(start, stop, num, name=None) 
# tf.lin_space(10.0, 13.0, 4) ==> [10. 11. 12. 13.]

#start(包括start),limit(最后结果小于limit),delta步长
tf.range(start, limit=None, delta=1, dtype=None, name='range')
# tf.range(3, 18, 3) ==> [3 6 9 12 15]

# 从0开始,5个数 
# tf.range(5) ==> [0 1 2 3 4]

node.eval()也可以运行session,得到输出结果. 需要运行 tf.InteractiveSession()

TensorFlow Data Types

Variables

lecture

Importing Data

lecture

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值