总结
使用CNN进行边缘检测,主要在数据库BSD500实验。主要贡献如下:
- 网络开始阶段,细节边缘丰富。网络后续阶段,细节(内部)边缘减少,轮廓信息更明显。所以利用FPN思想结合高层和底层的Feature Map进行边缘检测。
- 优化LOSS FUNCTION,使其更具有一般性。
在BSDS500 benchmark,得到 ODS F-measure 0.811 (8FPS)
简化版本ODS F-measure 0.806 (30FPS)
得到2017年最好边缘检测的效果。
网络结构
网络主干为VGG16, 每个ConvGroup即一个stage后接pooling下采样。
每个stage的各个conv层后接1x1conv降维,再将group中所有降维后的feature maps相加(eltwise)得到融合特征。再接一个deconv恢复尺寸记为Stage feature map,用其计算loss。
最后阶段concat每个stage得到的Stage feature map,然后接一个1x1conv降维,计算loss。
网络具体结构及感受野如下表格所示