Richer Convolutional Features for Edge Detection论文笔记

本文探讨了如何使用CNN进行边缘检测,特别是在BSD500数据集上的应用。通过结合高层和底层特征,提出了一种利用FPN思想的边缘检测方法。在优化损失函数后,在BSDS500基准上达到了ODS F-measure 0.811的优秀效果。网络结构基于VGG16,并采用特定的融合和降维策略。此外,还改进了处理多个标注者信息的方法,提升了检测性能。
摘要由CSDN通过智能技术生成

总结

使用CNN进行边缘检测,主要在数据库BSD500实验。主要贡献如下:

  1. 网络开始阶段,细节边缘丰富。网络后续阶段,细节(内部)边缘减少,轮廓信息更明显。所以利用FPN思想结合高层和底层的Feature Map进行边缘检测。
  2. 优化LOSS FUNCTION,使其更具有一般性。

在BSDS500 benchmark,得到 ODS F-measure 0.811 (8FPS)

简化版本ODS F-measure 0.806 (30FPS)

得到2017年最好边缘检测的效果。

网络结构

网络主干为VGG16, 每个ConvGroup即一个stage后接pooling下采样。

每个stage的各个conv层后接1x1conv降维,再将group中所有降维后的feature maps相加(eltwise)得到融合特征。再接一个deconv恢复尺寸记为Stage feature map,用其计算loss。

最后阶段concat每个stage得到的Stage feature map,然后接一个1x1conv降维,计算loss。

网络具体结构及感受野如下表格所示

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值