文章目录
- 引子
- A Distributional Perspective on Reinforcement Learning, Bellemare et al, 2017. Algorithm: C51.
- Distributional Reinforcement Learning with Quantile Regression, Dabney et al, 2017. Algorithm: QR-DQN.
- Implicit Quantile Networks for Distributional Reinforcement Learning, Dabney et al, 2018. Algorithm: IQN.
- Dopamine: A Research Framework for Deep Reinforcement Learning, Anonymous, 2018. Contribution: Introduces Dopamine, a code repository containing implementations of DQN, C51, IQN, and Rainbow. Code link.
引子
基于Q-learning 的 Distributional RL。学习的目标是一个Q的分布,而非一个值。
如上面的游戏中,agent预测了下一时刻可能的reward的分布,传统的Q-learning 的 reward就是这个reward分布的期望。
核心思想就是:学习一个值而不是一个分布,保留更多信息。
事实上,保留更多Q的信息确实能够让模型训练得更好。
A Distributional Perspective on Reinforcement Learning, Bellemare et al, 2017. Algorithm: C51.
这是值分布的开山之作。
与DQN相比:
- 相同点
- value-based
- ϵ−greedy
- 单独目标网络
- 不同点
- 输出的是价值的概率
- 使用KL散度作为损失函数
这里的Z就是动作价值的分布。对Z求期望结果就是Q值。
C51和DQN相比,大致示意图就是这样的:(从点到分布)
论文埋下了一个伏笔,理论证明内容的距离和“KL”散度对应的距离不同。在下一篇论文中得到了解释。
Distributional Reinforcement Learning with Quantile Regression, Dabney et al, 2017. Algorithm: QR-DQN.
一开始作者们并没有想到合适的方法模拟Wasserstein Metric这个过程,于是提出了使用KL散度做近似的想法。
实际上,基于这个想法提出的C51算法确实效果不错。然而,紧接着作者们又提出了更“正统”的算法QR-DQN,它继承了最开始的理论想法。
现在,他们通过Wasserstein距离作为距离度量,实现了理论的完善。
这个距离又称最小推土机距离。用来衡量两个分布最少要移动多少才能重合。
在连续型分布中,就是看两个概论分布之间的面积大小。
Implicit Quantile Networks for Distributional Reinforcement Learning, Dabney et al, 2018. Algorithm: IQN.
distributional RL最关键的应用是risk-aware。
对网络噪声作相应的参数变换,差生特定的风险偏好。
风险参数表示方法:
输入为状态 s和一个采样 τ ,输出不同离散动作对应的价值函数分布的 τ分位数。这样训练出来的、具有不同风险偏好的网络在各方面也有不同的表现。
在上图中,如Wang(.75)就比较乐观,倾向于乐观估计动作价值。后面四种则更多地把注意力放在一些会带来负收益的动作上。
值得一提的是,在Atari中risk-averse性能更好。
Dopamine: A Research Framework for Deep Reinforcement Learning, Anonymous, 2018. Contribution: Introduces Dopamine, a code repository containing implementations of DQN, C51, IQN, and Rainbow. Code link.
一个专用于视频游戏训练结果的平台。
含有DQN、C51、简化版的 Rainbow 智能体和 IQN。
基于tensorflow的,没有仔细看代码。
环境配置教程:
https://cloud.tencent.com/developer/article/1541880
都看到这里了,就顺手点个赞吧~