【论文笔记】分布型强化学习(Distributional RL)专题5篇


在这里插入图片描述

引子

基于Q-learning 的 Distributional RL。学习的目标是一个Q的分布,而非一个值。
在这里插入图片描述
如上面的游戏中,agent预测了下一时刻可能的reward的分布,传统的Q-learning 的 reward就是这个reward分布的期望。
核心思想就是:学习一个值而不是一个分布,保留更多信息。
事实上,保留更多Q的信息确实能够让模型训练得更好。

A Distributional Perspective on Reinforcement Learning, Bellemare et al, 2017. Algorithm: C51.

在这里插入图片描述
这是值分布的开山之作。
与DQN相比:

  • 相同点
    • value-based
    • ϵ−greedy
    • 单独目标网络
  • 不同点
    • 输出的是价值的概率
    • 使用KL散度作为损失函数

在这里插入图片描述
这里的Z就是动作价值的分布。对Z求期望结果就是Q值。
C51和DQN相比,大致示意图就是这样的:(从点到分布)
在这里插入图片描述

论文埋下了一个伏笔,理论证明内容的距离和“KL”散度对应的距离不同。在下一篇论文中得到了解释。

Distributional Reinforcement Learning with Quantile Regression, Dabney et al, 2017. Algorithm: QR-DQN.

在这里插入图片描述
一开始作者们并没有想到合适的方法模拟Wasserstein Metric这个过程,于是提出了使用KL散度做近似的想法。
实际上,基于这个想法提出的C51算法确实效果不错。然而,紧接着作者们又提出了更“正统”的算法QR-DQN,它继承了最开始的理论想法。
现在,他们通过Wasserstein距离作为距离度量,实现了理论的完善。
在这里插入图片描述
这个距离又称最小推土机距离。用来衡量两个分布最少要移动多少才能重合。
在这里插入图片描述
在连续型分布中,就是看两个概论分布之间的面积大小。

Implicit Quantile Networks for Distributional Reinforcement Learning, Dabney et al, 2018. Algorithm: IQN.

在这里插入图片描述
distributional RL最关键的应用是risk-aware。
对网络噪声作相应的参数变换,差生特定的风险偏好。
风险参数表示方法:
在这里插入图片描述
输入为状态 s和一个采样 τ ,输出不同离散动作对应的价值函数分布的 τ分位数。这样训练出来的、具有不同风险偏好的网络在各方面也有不同的表现。
在这里插入图片描述
在上图中,如Wang(.75)就比较乐观,倾向于乐观估计动作价值。后面四种则更多地把注意力放在一些会带来负收益的动作上。

值得一提的是,在Atari中risk-averse性能更好。

Dopamine: A Research Framework for Deep Reinforcement Learning, Anonymous, 2018. Contribution: Introduces Dopamine, a code repository containing implementations of DQN, C51, IQN, and Rainbow. Code link.

在这里插入图片描述

一个专用于视频游戏训练结果的平台。
含有DQN、C51、简化版的 Rainbow 智能体和 IQN。

基于tensorflow的,没有仔细看代码。
在这里插入图片描述
环境配置教程:
https://cloud.tencent.com/developer/article/1541880


都看到这里了,就顺手点个赞吧~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邵政道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值