Logisim之——2位比较器

任务描述

本关任务:在Logisim中完成2位比较器电路的绘制并完成测试。

相关知识

在数字电路中,经常需要对两个位数相同的二进制数进行比较,以判断它们的相对大小或者是否相等,用来实现这一功能的逻辑电路就称为数值比较器,简称比较器。

2位比较器原理
2位比较 X1X0 : Y1Y0,比较顺序从高位到低位,当高位大、小关系确定时则无需看低位,当高位相等时再看相邻低位的关系。
大于Great:
L1 = L11 + L13∙L01
= (X1>Y1) + (X1==Y1)(X0>Y0)(条件表达)
= X1 ~ Y1 + ~ (X1^Y1)X0~Y0 (逻辑表达)

等于Equal:
L3 = L13∙L03
= (X1= =Y1) (X0==Y0)
= ~ (X1 ^ Y1) ~ (X0 ^ Y0)(同或/异或非)
Lij第1个下标表示位数,第2个下标表示大小关系1大、2小、3相等,只有一个下标时表示大小关系。
注意:对于三个比较结果,已知其中任意两个,可以用或非门求得第三个。

原理图

在这里插入图片描述

测试

在这里插入图片描述

<think>好的,用户问的是如何在Logisim中设计和实现四无符号二进制数比较器电路。首先,我需要回忆一下数值比较器的基本概念。根据引用[1],数值比较器用于比较两个二进制数相对大小是否相等。四无符号比较器需要处理两个二进制数A和B,输出A>B、A<B、A=B这三个结果。 接下来,我应该考虑如何从低到高比较。通常,比较器会从最高开始比较,因为高权重更大。如果最高不同,就能直接判断大小;如果相同,则继续比较下一。例如,如果A的最高是1而B的是0,那么A肯定大于B,无需看后面的。 然后是电路设计的具体步骤。首先,需要分解四位数为四个独立的比较单元,每个单元处理一。每个单元可能需要三个输入:当前的A和B,以及来自上一比较结果。但这里可能存在问题,因为四比较器通常是并行处理而不是级联的,特别是对于无符号数来说,可以同时比较。 不过,根据常规设计,四比较器通常采用级联方式,但无符号的比较可能更简单。者,可能需要使用多个一比较器,并将它们的输出组合起来。例如,每个比较器产生该比较结果,然后通过组合逻辑确定整体结果。 然后,真值表是关键。列出所有可能的输入组合,确定在每种情况下三个输出(A>B, A<B, A=B)的值。例如,当A3 > B3时,无论低如何,A一定大于B。如果A3等于B3,则比较A2和B2,依此类推,直到所有比较完毕。 接着,逻辑表达式的推导。根据真值表,写出每个输出(如A>B)的逻辑表达式。这可能涉及到多个的条件组合,比如最高相等时次高的情况等。需要用与门、门、非门等基本逻辑门来实现这些表达式。 在Logisim中实现时,可能需要使用分层次的设计。例如,先创建一比较器模块,然后级联四个这样的模块,者直接根据表达式构建组合电路。每个比较结果可能需要结合更高的结果,因此需要注意信号的传递顺序。 另外,引用[2]提到了有符号和无符号比较,但用户需要的是无符号比较,所以不需要考虑符号,直接处理四二进制数的数值即可。例如,四二进制数的范围是0到15,直接比较它们的数值大小。 可能的错误点:是否处理了所有情况,比如当所有都相等时,A=B应该为真,否则根据第一个不同的决定大小。在组合逻辑中,需要确保优先级,即高优先于低进行比较。 最后,测试电路时,需要输入不同的四组合,验证输出是否符合预期。例如,当A=1010(10)和B=1001(9)时,A>B应该为真;当A=0011(3)和B=0011时,A=B为真。 总结步骤:明确需求,设计真值表,推导逻辑表达式,构建逻辑电路,分层实现,测试验证。</think>在Logisim中实现四无符号比较器需要遵循数值比较器的设计原理,通过逐比较和组合逻辑判断最终结果。以下是具体实现步骤: ### 一、基本原理 四无符号比较器需实现两个功能: 1. 判断$A_3A_2A_1A_0$与$B_3B_2B_1B_0$的大小关系 2. 输出三种状态信号:$A>B$、$A<B$、$A=B$ 比较规则采用**高优先原则**:从最高$A_3/B_3$开始比较,若相等则依次比较,直到出现不同为止[^1]。 ### 二、真值表与逻辑表达式 四比较器的简化真值表如下(以最高为例): $$ \begin{array}{|c|c|c|} \hline 条件 & 输出 \\ \hline A_3 > B_3 & A>B=1 \\ A_3 < B_3 & A<B=1 \\ A_3 = B_3且A_2 > B_2 & A>B=1 \\ \vdots & \vdots \\ 全等 & A=B=1 \\ \hline \end{array} $$ 逻辑表达式推导: $$ A>B = (A_3>B_3) + (A_3=B_3)(A_2>B_2) + \cdots + (A_3=B_3)(A_2=B_2)(A_1=B_1)(A_0>B_0) $$ $$ A<B = (A_3<B_3) + (A_3=B_3)(A_2<B_2) + \cdots + (A_3=B_3)(A_2=B_2)(A_1=B_1)(A_0<B_0) $$ $$ A=B = (A_3=B_3)(A_2=B_2)(A_1=B_1)(A_0=B_0) $$ ### 三、Logisim实现步骤 1. **创建比较模块** - 使用XOR门判断单bit相等:$A_i=B_i = \overline{A_i \oplus B_i}$ - 通过AND门组合相等条件链 ```logisim [每个比较单元包含: 输入:A_i, B_i 输出:eq_out(级联相等信号), gt_out(该大于信号), lt_out(该小于信号)] ``` 2. **构建四级联结构** ``` A3B3 → 比较单元1 → eq_out1 ↘ gt_out1/lt_out1 A2B2比较单元2 → eq_out2 (需与eq_out1相与) ↘ gt_out2/lt_out2 ...(依次级联至最低) ``` 3. **组合最终输出** - $A>B = gt3 + (eq3 \cdot gt2) + (eq3 \cdot eq2 \cdot gt1) + (eq3 \cdot eq2 \cdot eq1 \cdot gt0)$ - $A<B$结构同理 - $A=B = eq3 \cdot eq2 \cdot eq1 \cdot eq0$ 4. **完整电路示例** ```logisim [四输入引脚A3-A0/B3-B0] ↓ [四级联比较结构] ↓ [三输出引脚A>B/A<B/A=B] ``` ### 四、验证方法 1. 测试边界值:最小(0000)、最大(1111)、中间值 2. 验证特殊组合: - 1000 vs 0111(最高决定) - 1010 vs 1010(全等) - 0011 vs 0100(次高决定)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是X大魔王

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值