leetcode *剑指 Offer 47. 礼物的最大价值 & *64. 最小路径和(2020.7.23)

【题目】*剑指 Offer 47. 礼物的最大价值

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

示例 1:

输入: 
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物

提示:
0 < grid.length <= 200
0 < grid[0].length <= 200

【解题思路1】动态规划

见过这题,但是不记得在哪里见过了,找到了补充
dp数组的含义: dp[i][j] 表示动 (0, 0) 到 (i, j) 的最大累计和
边界条件: 数组的最左边只能从上面的格子过来,数组的最上边只能从左边的格子过来
动态转移方程: 其他格子可以从上面也可以从左边过来,所以取最大值 dp[i][j] += Math.max(dp[i - 1][j], dp[i][j - 1]);
因为在原数组上直接累加更方便,所以不新建dp数组了

class Solution {
    public int maxValue(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        for(int i = 1; i < m; i++) {
            grid[i][0] += grid[i - 1][0];
        }
        for(int j = 1; j < n; j++) {
            grid[0][j] += grid[0][j - 1];
        }
        for(int i = 1; i < m; i++) {
            for(int j = 1; j < n; j++) {
                grid[i][j] += Math.max(grid[i - 1][j], grid[i][j - 1]);
            }
        }
        return grid[m - 1][n - 1];
    }
}

【题目】*64. 最小路径和

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。

示例:

输入:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。

【解题思路1】动态规划

每个格子只能来自于其左边或者上边的格子
dp数组的含义 :dp[i][j]表示从左上角出发到 (i,j) 位置的最小路径和
边界条件: dp[0][0]=grid[0][0] ;上侧边的格子只能来自于左边,左侧边的格子只能来自于上边。
动态转移方程
d p [ i ] [ j ] = { d p [ i − 1 ] [ 0 ] + g r i d [ i ] [ 0 ] , i > 0 , j = 0 d p [ 0 ] [ j − 1 ] + g r i d [ 0 ] [ j ] , i = 0 , j > 0 m i n ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ) + g r i d [ i ] [ j ] , i > 0 , j > 0 dp[i][j] = \begin{cases} dp[i−1][0]+grid[i][0], & i > 0, j =0 \\ dp[0][j−1]+grid[0][j], & i = 0, j > 0 \\ min(dp[i−1][j],dp[i][j−1])+grid[i][j], & i > 0, j > 0 \\ \end{cases} dp[i][j]=dp[i1][0]+grid[i][0],dp[0][j1]+grid[0][j],min(dp[i1][j],dp[i][j1])+grid[i][j],i>0,j=0i=0,j>0i>0,j>0

class Solution {
    public int minPathSum(int[][] grid) {
        if (grid == null || grid.length == 0 || grid[0].length == 0) {
            return 0;
        }
        int rows = grid.length, columns = grid[0].length;
        int[][] dp = new int[rows][columns];
        dp[0][0] = grid[0][0];
        for (int i = 1; i < rows; i++) {
            dp[i][0] = dp[i - 1][0] + grid[i][0];
        }
        for (int j = 1; j < columns; j++) {
            dp[0][j] = dp[0][j - 1] + grid[0][j];
        }
        for (int i = 1; i < rows; i++) {
            for (int j = 1; j < columns; j++) {
                dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
            }
        }
        return dp[rows - 1][columns - 1];
    }
}
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页