以上图为例,我们仔细看上图全连接层的结构,全连接层中的每一层是由许多神经元组成的(1x 4096)的平铺结构。它是怎么样把3x3x5的输出,转换成1x4096的形式???
从上图我们可以看出,我们用一个3✖3✖5的filter去卷积激活函数的输出,得到的结果就是一个fully connected layer 的一个神经元的输出,这个输出就是一个值。
因为我们有4096个神经元,我们实际就是用一个3✖3✖5✖4096的卷积层去卷积激活函数的输出。
这么做有一非常重要的作用:就是它把特征representation整合到一起,输出为一个值。有什么好处呢?就是可以大大减少特征位置对分类带来的影响。
为什么有的时候全连接层是两层呢?
激活神经元。再往后就是softmax了,以后再回来看,再完善。
全连接层结构理解
最新推荐文章于 2025-03-15 15:13:06 发布