全连接层结构理解

以上图为例,我们仔细看上图全连接层的结构,全连接层中的每一层是由许多神经元组成的(1x 4096)的平铺结构。它是怎么样把3x3x5的输出,转换成1x4096的形式???在这里插入图片描述
在这里插入图片描述
从上图我们可以看出,我们用一个3✖3✖5的filter去卷积激活函数的输出,得到的结果就是一个fully connected layer 的一个神经元的输出,这个输出就是一个值。
因为我们有4096个神经元,我们实际就是用一个3✖3✖5✖4096的卷积层去卷积激活函数的输出。
这么做有一非常重要的作用:就是它把特征representation整合到一起,输出为一个值。有什么好处呢?就是可以大大减少特征位置对分类带来的影响。
在这里插入图片描述
为什么有的时候全连接层是两层呢?
在这里插入图片描述
激活神经元。再往后就是softmax了,以后再回来看,再完善。

### 全连接层神经网络结构图解释 #### 定义与特点 全连接层(Fully Connected Layer),也称为密集层,是指每一层中的每个节点都与其他层的所有节点相连接。这种设计使得该类型的层能够捕捉输入数据的整体模式并将其映射到输出空间[^2]。 #### 结构描述 在一个典型的多层感知器或多层前馈网络中,全连接层通常位于最后几层的位置。这些层接收来自前面各层处理过的特征作为输入,并将它们组合成更高层次的抽象表示形式以便于最终决策或预测任务。具体来说: - **输入层**:负责接受原始的数据样本; - **隐藏层**:由若干个中间层组成,每层都是一个完整的全连接子网; - **输出层**:用于给出整个模型对于给定输入的具体判断结果; 在实际绘制过程中,可以通过图形化工具来展示上述各个部分之间的相互联系以及权重矩阵的作用方式。例如,在Microsoft Word这样的办公软件里就可以利用内置绘图功能轻松创建此类图表[^1]。 为了更直观地理解这一点,下面是一个简单的Python代码片段,它展示了如何构建一个具有两个全连接层的基础神经网络架构: ```python import tensorflow as tf from tensorflow.keras import layers, models model = models.Sequential() # 添加第一个全连接层,指定输入维度为784(假设是展平后的图像) model.add(layers.Dense(128, activation='relu', input_shape=(784,))) # 第二个全连接层 model.add(layers.Dense(64, activation='relu')) # 输出层,这里假设有10类目标标签 model.add(layers.Dense(10)) ``` 此段代码定义了一个包含两层全连接单元的小型人工神经网络框架,其中`Dense()`函数用来实现单个全连接操作,并指定了激活函数类型以增强表达能力[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值