旅行商 TSP
哈密顿回路
混合整数线性规划
Mixed-Integer Linear Program (MILP)
生成问题(generation problems)
find all elements in the set S that possess some property and enumeration problems that focus on computing the total number of elements of a particular type. 找到满足某一条件的所有解,这就不存在最优解的情况。不属于最优化问题
Vehicle Routing Problem (VRP)
Graph Coloring Problem
Maximum Independent Set Problem(MISP)
- G(V,E)是一个无向图。G的一个独立集合S1(S1是G的子集)是指,在S1中,任意的两个点之间没有边相连。最大独立子集是指满足这个独立集合性质的,子集元素最多的集合。
- 一个例子如下图所示
Bin Packing Problem
Knapsack Problem
Maximum Cut Problem
-
已知图G=(V,E),假设每个边都有权重 w i w_i wi,找到一个分割,将V分成(S, V-S)两个集合,并让新的集合之间的边权和最大。
-
数学化定义,假设有节点i
x i = { 1 i ∈ S − 1 i ∈ V − S x_{i}=\left\{\begin{array}{ll} 1 & i \in S \\ -1 & i \in V-S \end{array}\right. xi={1−1i∈Si∈V−S -
最大化的目标函数
max x ∈ { − 1 , 1 } ∗ ∑ i < j w i , j 1 − x i x j 2 \max _{x \in\{-1,1\}^{*}} \sum_{i<j} w_{i, j} \frac{1-x_{i} x_{j}}{2} x∈{−1,1}∗maxi<j∑wi,j21−xixj
w i , j w_{i,j} wi,j表示连接点i和点j之前的边的权重
Set Covering Problem 集合覆盖
Dominating Set Problem 主宰集合
- 在图中找最大的点集,使得点集内的所有点互不相连。
Minimum Vertex Cover
- 就是在图中找最小的点集,使得覆盖所有边。