组合优化问题类型(更新ing)

旅行商 TSP

哈密顿回路

混合整数线性规划

Mixed-Integer Linear Program (MILP)

生成问题(generation problems)

find all elements in the set S that possess some property and enumeration problems that focus on computing the total number of elements of a particular type. 找到满足某一条件的所有解,这就不存在最优解的情况。不属于最优化问题

Vehicle Routing Problem (VRP)

Graph Coloring Problem

Maximum Independent Set Problem(MISP)

  • G(V,E)是一个无向图。G的一个独立集合S1(S1是G的子集)是指,在S1中,任意的两个点之间没有边相连。最大独立子集是指满足这个独立集合性质的,子集元素最多的集合。
  • 一个例子如下图所示
    在这里插入图片描述

Bin Packing Problem

Knapsack Problem

Maximum Cut Problem

  • 已知图G=(V,E),假设每个边都有权重 w i w_i wi,找到一个分割,将V分成(S, V-S)两个集合,并让新的集合之间的边权和最大。

  • 数学化定义,假设有节点i
    x i = { 1 i ∈ S − 1 i ∈ V − S x_{i}=\left\{\begin{array}{ll} 1 & i \in S \\ -1 & i \in V-S \end{array}\right. xi={11iSiVS

  • 最大化的目标函数
    max ⁡ x ∈ { − 1 , 1 } ∗ ∑ i < j w i , j 1 − x i x j 2 \max _{x \in\{-1,1\}^{*}} \sum_{i<j} w_{i, j} \frac{1-x_{i} x_{j}}{2} x{1,1}maxi<jwi,j21xixj

w i , j w_{i,j} wi,j表示连接点i和点j之前的边的权重

Set Covering Problem 集合覆盖

Dominating Set Problem 主宰集合

  • 在图中找最大的点集,使得点集内的所有点互不相连。

Minimum Vertex Cover

  • 就是在图中找最小的点集,使得覆盖所有边。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值