kaldi中运行thchs30流程,文件配置详解

  本人是kaldi新手,前些阶段运行了kaldi中中文最难的样例aishell,终于跑成功了,修改了好多路径、请教了好多大神,在此感谢,如果有想了解详细的运行过程可以和鄙人交流。

  由于要做在线识别,网上大多数都是关于thchs30的在线识别,aishell缺少在线识别的教程,没办法,本人是小白,只能跟着大佬做,目前进行到训练脚本的部分。下面谈一下训练thchs30这个例子的过程,可能大多数人在网上看到的都是说直接修改文件目录就可以,然后把cmd脚本queue 修改为 run ,但是博主用上面的方法并没有实现,经过一天的烧脑,终于运行了。

  下面详细介绍一下博主的经验所得,首先针对于不同的系统,如Ubuntu14.04和16.04是不同,可能里面的shell脚本可能执行结果不兼容,首先我举一个例子。在thchs30脚本中,按理说mkdir -p data/{dict,lang.graph},这条命令按理说是在data目录下创建三个文件夹,分别为dict,lang,graph,但是博主测试了好几遍都是创建一个文件名为{dict,lang,graph}的文件夹,这里不知道是什么原因,请教了几位大佬也没法解决。最后没办法只能一步一步的将脚本里面的内容复制到相应的文件夹。

  可能是由于的我的计算机太2,配置太低,导致在shell脚本中,我的cp命令并没有原想的样子,有的啥时候并不能实现,有时候报错可能脚本本身并没有问题,问题在于你的计算机不够智能,在此博主想问:到底什么时候才能到达人工智能的时代??

  总而言之:遇到bug不一定是程序本身的问题,而是在于计算机运行的问题,在此博主建议,运行出错,可以直接简答粗暴,直接自己手动按照命令执行,人工智能关键是人!!

基于深度学习识别THCHS30数据集 深度学习(Deep Learning,简称DL)是机器学习(Machine Learning,简称ML)领域一个新的研究方向,其目标是让机器能够像人一样具有分析学习能力,识别文字、图像和声音等数据。深度学习通过学习样本数据的内在规律和表示层次,使机器能够模仿视听和思考等人类活动,从而解决复杂的模式识别难题。 深度学习的核心是神经网络,它由若干个层次构成,每个层次包含若干个神经元。神经元接收上一层次神经元的输出作为输入,通过加权和转换后输出到下一层次神经元,最终生成模型的输出结果。神经网络之间的权值和偏置是神经网络的参数,决定了输入值和输出值之间的关系。 深度学习的训练过程通常涉及反向传播算法,该算法用于优化网络参数,使神经网络能够更好地适应数据。训练数据被输入到神经网络,通过前向传播算法将数据从输入层传递到输出层,然后计算网络输出结果与实际标签之间的差异,即损失函数。通过反向传播算法,网络参数会被调整以减小损失函数值,直到误差达到一定的阈值为止。 深度学习还包含两种主要的神经网络类型:卷积神经网络(Convolutional Neural Networks,简称CNN)和循环神经网络(Recurrent Neural Networks,简称RNN)。卷积神经网络特别擅长处理图像数据,通过逐层卷积和池化操作,逐步提取图像的高级特征。循环神经网络则适用于处理序列数据,如文本或时间序列数据,通过捕捉序列的依赖关系来生成模型输出。 深度学习在许多领域都取得了显著的成果,包括计算机视觉及图像识别、自然语言处理、语音识别及生成、推荐系统、游戏开发、医学影像识别、金融风控、智能制造、购物领域、基因组学等。随着技术的不断发展,深度学习将在更多领域展现出其潜力。 在未来,深度学习可能会面临一些研究热点和挑战,如自监督学习、小样本学习、联邦学习、自动机器学习、多模态学习、自适应学习、量子机器学习等。这些研究方向将推动深度学习技术的进一步发展和应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值