首先,你要有自信心,要明确学习的目的。学Python,可以解决在软件使用中所遇到的问题,可以为找到理想工作添加重要砝码。还能锻炼思维,使我们的逻辑思维更加严密;能够不断享受到创新的乐趣,将走在高科技的前沿。
在我们最初开始想学习编程语言的时候需要先了解一下Python的学习路线:
一、Python基础阶段
掌握python脚本、python界面编程能力、数据库、基本爬虫、多线程多进程开发能力,可以胜任基本的python开发工作。知识点:
1.数据的存储:Python概述、进制以及进制转换、原码、反码、补码、第一个Python程序、终端读取与打印等。
2.运算符与表达式:关键字和标识符、算术运算符、python数据类型、赋值运算符、运算符、复合运算符、条件控制语句(if…else…)、逻辑运算符等。
3.循环:循环语句之while、循环语句之for、break与continue语句等。
4.基础数据结构:Number与数学函数操作、String(查找,替换,下标索引、列表(常用)、元组、字典(常用)、set集合、迭代器与生成器(常用)、函数概述等。
5.函数
6.模块
7.面向对象编程
8.继承、封装、多态
9.面向对象
10.文件操作与异常处理
11.高阶函数与测试
12.排列组合与正则表达:破解密码
13.网络编程
二、Linux和数据库阶段
掌握Linux操作系统管理技术,可以搭建几乎所有Linux环境服务器。知识点:
1.Linux操作系统
2.文件系统与用户管理
3.文本操作命令
4.网络命令、进程管理
5.Shell编程与bash、源文件
三、Python web开发
掌握Python后端框架,解决前后端Web开发问题,知识点:
1.HelloDjango:BS/CS,MVC/MTV、Django请求流程、Admin管理。
2.Models:ORM、模型字段属性、CRUD、聚合函数,F,Q对象。
3.Models&Templates:模型对应关系、模板加载、静态资源、模板语法。
4.Views:路由规则、反向解析、请求与响应、会话技术cookie,token,ses-sion、文件上传。
5.Advanced:验证码、分页器、类视图、中间件、日志、缓存、信号、Cerlery、用户权限,用户角色
6.RESTful:REST概念、HelloREST、数据序列化、请求与响应、视图,转换器、关系,超链接、认证和权限。
四、Python爬虫阶段
掌握分布式多线程大型爬虫技术,能开发企业级爬虫程序。
1.多线程原理:同步与异步、串联与并发、线程、开辟一个线程、线程安全与线程锁、多线程队列。
2.协程:线程的局限、协程的定义与原理、协程的实现。
3.爬虫的概念及相关工具:爬虫的概念及作用、HTTP协议原理、工具的安装、使用。
4.Python http libs:urllib的使用、示例requests库的使用、bs4库的使用、xpath语法。
5.爬虫实战:使用requests编写-个简单爬虫、改造requests爬虫为多线程版、利用redis改造多线程版爬虫至分布式。
6.scrapy框架
7.量化交易:自动化交易理论、Python量化交易框架。
五、Python机器学习阶段
掌握Python数据挖掘分析,入门人工智能。知识点:
1.jupyter入门:jupyter软件安装、jupyter入门、numpy学习。
2.pandas:pandas入门、pandas-Series、pandas数据丢失、pandas索引、pandas数据处理、基于Pandas的人脸识别技术。
3.scipy:scipy学习
4.matpoltlib:数据可视化的概念、可视化图表的绘制、动画及交互渲染、数据的合并与分组。
5.KNN:临近算法、预处理、KNN相关函数。
6.线性回归与逻辑斯蒂回归:线性回归、逻辑斯蒂回归。
7.决策树与贝叶斯:贝叶斯学习、决策树学习。
8.SVM与K均值聚类:SVC学习
9.Kmeans: Kmeans学习
10.机器学习框架TensorFlow:机器学习、权重分配与优选方案、深度学习、自动化神经网络、AI网络的描述。
11.自然语言处理与社交网络处理:文本数据处理、自然语言处理及NLTK、主题模型、LDA、图论简介、网络的操作及数据可视化。
然后就是要打好基础,要想成为一名优秀的Python程序员,最重要的是掌握编程思想。有了思想,我们就可以触类旁通。在学习中,我们不必等到什么都完全明白了才去动手实践,只要明白了大概,就要敢于自己动手去体验。
另外,掌握编程思想必须在编程实际工作中去实践和体会。每个人的思维方式不同、角度各异,各有高招,通过交流可不断吸收别人的长处,丰富编程实践,帮助自己提高水平。亲自动手进行程序设计是培养逻辑思维的好方法。
Python入门不难,但入门后不断学习是十分重要的,相对来说较为漫长。在此期间要注意养成一些良好的编程习惯。编程风格的好坏很大程度影响程序质量。良好的编程风格可以使程序结构清晰合理,且使程序代码便于维护。
俗话说,书读百遍其义自见。编程也是一样,只有多打代码,才能从中找到规律。所以最重要的还是实践,看再多的书和视频,不去敲代码还是没有效果。
而且要学会循序渐进,千万不要学了点基础就想着编个小程序什么的,因为你很容易就会有挫败感。我们知道,万事开头难,本来学一门语言就是个艰难的开始,要是一开始就有“栽跟头”的感觉,是不是就容易放弃了呢?
另外,我相信经过坚持不懈的努力,编程可能成为你的爱好。所以,与其痛苦忍受,不如快乐地接受。还有就是,Python挺好上手的,别给自己太大的压力啦。自信点,世上无难事,只怕有心人。
为了帮助大家更好的学习Python,小编给大家准备了一份Python学习资料,里面的内容都是适合零基础小白的笔记和资料,不懂编程也能听懂、看懂,需要获取方式:扫描下方即可获取。
👉Python学习路线汇总
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉Python必备开发工具👈
👉精品Python学习书籍👈
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
温馨提示:篇幅有限,已打包文件夹,获取方式:点击这里【 Python全套资料】 或扫描下方即可获取。
👉Python学习视频600合集👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉100道Python练习题👈
👉面试刷题👈
👉实战案例👈
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
获取方式:点击这里【 Python全套资料】 或扫描下方即可获取。