加速你对数据分析的掌握,借助ChatGPT的强大功能。不论你是数据分析新手,还是想更快完成更多工作且更高效的专业人士,《使用生成式AI和Python入门数据分析》将帮助你简化和加速数据分析过程!这本书由两位世界级的数据科学家和一位经验丰富的风险经理撰写,专注于日常实际分析任务。
在《使用生成式AI和Python入门数据分析》一书中,你将学习如何:
-
编写出色的ChatGPT提示词
-
执行端到端的描述性分析
-
设置适合AI的数据分析环境
-
评估数据质量
-
制定战略性分析计划
-
生成代码以分析非文本数据
-
直接使用ChatGPT探索文本数据
-
准备可靠的报告
《使用生成式AI和Python入门数据分析》将教你如何提高编码效率,产生新的分析方法,并微调数据管道——在ChatGPT等AI工具的协助下。对于数据分析流程的每一步,你都会发现如何从简单的自然语言提示出发,应用数据技术。同时,你将发展出一种直觉,以应对这些工具仍然存在的风险和错误。
购买纸质书籍还可从Manning Publications免费获得PDF和ePub格式的电子书。
关于技术
如果你具备数据分析的基本知识,本书将展示如何利用ChatGPT加速日常的核心数据分析工作。速度提升是显著的:作者报告称,完成任务的时间仅为过去的三分之一甚至四分之一。
关于本书
本书提供了适用于工作中的可靠、实用的建议。它能帮助你更好地探索问题,生成新颖的分析方法,并微调数据管道——同时帮助你培养一种理解AI工具可能带来的风险和错误的直觉。最终,你能够完成更多工作,效率更高,结果更佳,轻松应对。
本书假设你已经掌握了基本的知识,并将指导你完成整个分析过程——从收集和准备原始数据、数据清理、生成基于代码的解决方案、选择统计工具,到最终创建有效的数据展示。清晰的提示帮助你提取、解读并展示数据,将你的技能提升到一个全新的水平。
内容提要
-
编写出色的ChatGPT提示词
-
执行端到端的描述性分析
-
设置适合AI的数据分析环境
-
评估数据质量
-
制定战略性分析计划
-
生成代码以分析非文本数据
-
直接使用ChatGPT探索文本数据
-
准备可靠的报告
关于作者
Artur Guja、Dr. Marlena Siwiak和Dr. Marian Siwiak是具有商业、科研和金融背景的经验丰富的数据科学家。
本书的技术编辑为Mike Jensen。
目录
-
数据分析中生成式AI的使用简介
-
利用生成式AI确保数据质量
-
在生成式AI支持下进行描述性分析与统计推断
-
使用生成式AI解读结果
-
使用生成式AI进行基础文本挖掘
-
使用生成式AI进行高级文本挖掘
-
扩展与性能优化
-
风险、缓解和权衡 附录A 向ChatGPT v4指定多个DataFrames 附录B ChatGPT代码调试指南 附录C 懒惰与人类错误
关于作者
Artur Guja是一位风险经理、计算机科学家、系统开发人员和金融市场专家,在银行业拥有超过20年的经验,致力于在IT、风险管理和金融产品交易领域提供安全且实用的解决方案。
Dr. Marlena Siwiak是一位经验丰富的数据科学家和生物信息学家,具备广泛的科学背景,并在开发商业数据应用方面积累了丰富经验,既能驾驭数据又能驾驭文字。
Dr. Marian Siwiak是一位数据科学家,凭借数据知识和管理经验,成功交付了涵盖生命科学、机器人等多领域的数百万规模的IT、科学和技术项目。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓