基于Ollama+DeepSeek+AnythingLLM轻松投喂打造本地大模型知识库(附完整教程、ollama+anythingLLM文件下载)

今天继续讲利用Ollama+DeepSeek+AnythingLLM轻松投喂打造本地大模型知识库

image-20250208183704501

Ollama

Ollama简介

Ollama 是一款提供本地部署和管理大模型的工具,可以轻松将不同的 AI 模型集成到本地环境中,并提供易于使用的界面和管理功能。你可以利用 Ollama 创建、启动和管理多个 AI 模型,并根据需要灵活配置不同的模型参数。

安装Ollama

(鉴于很多朋友无法下载ollama以及AnythingLLM,这里给大家整理好了安装包,扫描领取即可↓↓↓↓

安装成功,查看版本和启动服务

查看版本:      PS C:\Users\Administrator\Desktop> ollama -v   ollama version is 0.5.7      查看大模型   PS C:\Users\Administrator\Desktop> ollama list   NAME                     ID              SIZE      MODIFIED   llama3-cn-8b:latest      d710bb08d58c    6.6 GB    23 hours ago   llama2-chinese:latest    cee11d703eee    3.8 GB    42 hours ago   deepseek-r1:14b          ea35dfe18182    9.0 GB    2 days ago   qwen2.5:latest           845dbda0ea48    4.7 GB    2 days ago   deepseek-r1:7b           0a8c26691023    4.7 GB    2 days ago   llama3:latest            365c0bd3c000    4.7 GB    2 days ago

AnythingLLM

这是一个全栈应用程序,可以将任何文档、资源(如网址链接、音频、视频)或内容片段转换为上下文,以便任何大语言模型(LLM)在聊天期间作为参考使用。此应用程序允许您选择使用哪个LLM或向量数据库,同时支持多用户管理并设置不同权限。

开源中文: https://github.com/Mintplex-Labs/anything-llm/blob/master/locales/README.zh-CN.md

产品概览

AnythingLLM是一个全栈应用程序,您可以使用现成的商业大语言模型或流行的开源大语言模型,再结合向量数据库解决方案构建一个私有ChatGPT,不再受制于人:您可以本地运行,也可以远程托管,并能够与您提供的任何文档智能聊天。

AnythingLLM将您的文档划分为称为workspaces (工作区)的对象。工作区的功能类似于线程,同时增加了文档的容器化,工作区可以共享文档,但工作区之间的内容不会互相干扰或污染,因此您可以保持每个工作区的上下文清晰。

AnythingLLM特性

  • • 多用户实例支持和权限管理

  • • 全新的可嵌入式聊天小部件,适用于您的网站

  • • 支持多种文档类型(PDF、TXT、DOCX等)

  • • 通过简单的用户界面管理您的向量数据库中的文档

  • • 两种聊天模式:对话模式和查询模式。对话模式保留之前的问题和修改记录。查询模式用于对您的文档进行简单的问答。

  • • 聊天中的引用文献功能

  • • 完全适用于云部署。

  • • "自带 LLM "模型。

  • • 极其高效的成本节约措施,用于管理非常大的文档。您将永远不会为嵌入的大型文档或转录付费超过一次。比其他文档聊天机器人解决方案更省成本,降低 90%。

  • • 提供完整的开发者 API,用于自定义集成!

AnythingLLM下载与安装

下载: https://anythingllm.com/desktop

AnythingLLM也提供 macos、Window、Linux系统的下载

根据自己的系统下载,我这边下载Windows

image-20250208173023447

下载文件之后点击安装

image-20250208173941942

(鉴于很多朋友无法下载ollama以及AnythingLLM,这里给大家整理好了安装包,扫描领取即可↓↓↓↓

AnythingLLM配置

AnythingLLM默认通过Ollama来使用LLama2 7B,Mistral 7B,Gemma 2B等模型,也可以调用OpenAI、Gemini、Mistral等大模型的API服务。

此前,我已经安装了Ollama,那么只要选择Ollama,输入调用的API接口URL,再选择此前已经下载的Gemma模型即可。

1.打开软件

get started

image-20250208174317674

2.选择模型

这里选择Ollama并且选择 deepseek-r1:7B,这里选择你的已经安装的模型。

然后再点击向右的箭头,下一步。

image-20250208174532563

3.下一步

点击下一步,这里不用配置。

image-20250208174755881

4.填邮箱,可跳过

image-20250208174832482

5.填入工作区名称

这里我随便取一个名字“产品计划”

image-20250208174948521

修改聊天提示

这里把英文的聊天提示改成中文否则AI会用英文回答你。

image-20250208175722804

生成文档

我这边用ai生成一个文档,写入本地成word,等下就让deepseek去学习这篇文章

你是一个互联网的产品经理
1.写一篇文章虚拟一个APP产品
2.这个产品集成了微信、微博、小红书、抖音、支付宝、Line、youtube等所有中外app的优点
3.文档不少于5000字
4.这个app的名字叫“宙斯app”,写一篇文档介绍它

文档名《宙斯APP:全能社交与支付平台的未来.docx》

image-20250208175239105

投喂知识

1.点击上传按钮

image-20250208175956673

2.上传文件

上传文件并且移动到工作区。

image-20250208180151740

遇到问题

Error:1 documents failed toadd.
The specified module couldnot be found.?\C:\ProgramFiles\AnythingLLM\resources\backend\node modules\onnxruntime-node\bin\napiv3\win32\x64\onnxruntime binding.node

image-20250208180304121

解决办法:

在设置,点击Embedder , 设置 Ollama 使用

image-20250208182325588

3.再次导入文档

现在可以导入了,并且把图钉点上!

image-20250208182605126

一定要把图钉点上!一定要把图钉点上!一定要把图钉点上!

image-20250208182548315

对比使用

没有投喂文档的回答

image-20250208182955547

这是投喂了文档的回答。

image-20250208182838718

结束

通过将 Ollama、DeepSeek 和 AnythingLLM 三者结合,你可以轻松地构建一个本地大模型知识库。这种方法不仅能够帮助你高效地管理和组织信息,还能够提升你的工作效率,尤其是在处理海量文本、资料时,能够通过深度学习的能力快速找到最相关的内容。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### DeepSeek 本地化部署教程 #### 准备工作 为了顺利进行DeepSeek本地化部署,需先准备好所需的软件环境和硬件资源。确保计算机配置满足最低要求,并安装必要的依赖库[^2]。 #### 安装过程概述 整个安装流程分为四个主要部分: 1. **下载并安装OllamaAnythingLLM** - 访问官方网站获取最新版本的应用程序包。 - 按照官方文档指示完成应用程序的安装设置[^4]。 2. **准备DeepSeek模型文件** - 获取预训练好的DeepSeek模型权重文件。 - 将其放置于指定目录下以便后续加载使用[^3]。 3. **启动服务端口监听** - 打开命令行工具执行相应脚本开启API接口。 - 配置防火墙规则允许外部访问(可选)。 4. **验证部署成功与否** - 浏览器输入`http://localhost:8080`测试页面响应情况。 - 或者通过编程方式调用RESTful API接口发送请求检验功能正常运行状态。 ```bash # 启动服务器实例示例代码 python app.py --host=0.0.0.0 --port=8080 ``` --- ### 数据喂方法 对于希望进一步定制化的用户来说,向已有的DeepSeek框架内注入新的语料是非常重要的环节之一。具体操作如下所示: - 收集整理好待处理的数据集,建议采用JSON格式存储问答对形式的内容; - 修改源码中的数据读取路径指向新创建的数据文件位置; - 对新增加的知识点做适当标注便于后期检索利用; - 使用内置函数重新训练微调现有参数直至达到满意效果为止; ```json [ {"question": "你好吗?", "answer": "我很好"}, {"question": "今天天气怎么样?", "answer":"晴朗"} ] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值