2025年除了DeepSeek,你还得会MCP

在全民AI的2025年,我原以为大家都对MCP耳熟能详了,至少搞技术的都应该清楚是怎么回事。然而现实总是出人意料。

前两天,一家专门做大数据的公司找到我咨询MCP Server的事情。与他们开发交流的过程中,我惊讶地发现他们对MCP的基本概念,甚至最基础的Function Calling都了解得不是很清楚。最后,他们领导决定让我线上给团队做了一个培训。

(原定三小时,但我只用了两小时就给他们研发组所有人都讲得清清楚楚!)

更让我惊讶的是,今天一位建筑行业的大哥也来咨询Cursor中MCP Server的配置问题。看到他的投屏我才知道,现在连建筑行业都开始用MCP了!大哥说近期他们行业,包括他们公司,都在主推AI,有些人会使用3D绘图的MCP Server,还给我介绍了前段时间爆火的blender-mcp (https://github.com/ahujasid/blender-mcp) 项目。

虽然大哥目前配置的只是一个让模型能够进行深度有序思考的Server-Sequential Thinking,但他这种积极拥抱AI的态度着实让我感动。

这些经历让我意识到,尽管AI技术日新月异,但仍有许多人对MCP这样的基础概念不够了解。所以我决定写这篇博客,希望能帮助大家初步了解MCP,不至于在这个AI时代掉队。

什么是MCP?用最简单的话说

MCP,全称Model Context Protocol(模型上下文协议),是一个开放的标准协议,用于规范应用程序如何向AI模型提供上下文信息。(其实就是一个标准而且,不要想的太复杂。只不过这个标准是由Anthropic——做Claude模型的那个公司制定的,比较有权威性而已。)

想象一下,MCP就像AI世界的"USB-C接口":

  • USB-C让你的电脑能连接各种外设(显示器、硬盘、键盘等)

  • MCP让AI模型能连接各种数据源和工具(文件系统、数据库、API等)

简单说,MCP就是让AI能够"看见"和"操作"外部世界的标准接口

换句话说,它只是一个中心化的翻译官,具体的任务还是需要对应工具去执行(对应到AI应用就是Funtion Calling,显示器、键盘等就是一个一个的tool。)

为什么我们需要MCP?

在没有MCP之前,让AI使用外部工具和数据是件麻烦事:

  1. 每集成一个新工具,你都要写特定的代码

  2. 不同AI供应商有不同的接口标准

  3. 数据安全问题难以统一管理

举一个比较通俗的例子,就像你的GPT插件Claude用不了,或者你的Dify插件Coze用不了。

MCP解决了这些问题,它提供:

  • 预构建集成:有大量现成的MCP服务器可以直接使用

  • 灵活切换:可以轻松在不同AI供应商之间切换

  • 安全标准:确保你的数据在你的基础设施内安全处理

就像有了JDBC规范,你可以随便连接使用任何实现这个规范的数据库(软件史上每一次统一规范,必会带来一次重大的变革!)

MCP的基本架构是什么样的?

MCP采用经典的客户端-服务器架构:

(来自官方:Introduction - Model Context Protocol

主要组件包括:

  • MCP Hosts:就是你用的 Claude Desktop、Cursor、Cline等想通过MCP访问数据的程序

  • MCP客户端:维持与服务器1:1连接的协议客户端

  • MCP服务器:通过标准化协议暴露特定功能的轻量级程序

  • 数据源:可以是本地文件、数据库,也可以是远程API

打个比方:如果把AI模型比作"大脑",MCP服务器就像各种"感官"和"肢体",让AI能"看到"(读取数据)和"动手"(执行操作)。

MCP的核心概念

MCP定义了三个主要概念(也叫"原语"),让我们用最简单的类比来理解:

1. 资源(Resources)

类比:相当于AI的"眼睛"和"耳朵",让AI能"看到"和"听到"信息。

实际上是:允许AI读取数据的接口,比如文件内容、数据库信息等。

例子

  • 读取本地Excel文件

  • 获取网页内容

  • 查看数据库结构

2. 工具(Tools)

类比:相当于AI的"手",让AI能"做事"。

实际上是:允许AI执行操作的函数,比如修改文件、发送请求等。

例子

  • 发送电子邮件

  • 查询数据库

  • 生成图片

  • 执行代码

3. 提示(Prompts)

类比:相当于AI的"工作指南",指导AI如何完成特定任务。

实际上是:可重用的模板,定义AI与用户交互的模式。

例子

  • 代码审查模板

  • 数据分析向导

  • 翻译助手

MCP在实际中是如何工作的?

让我们看一个简单例子,用MCP来完成一个任务:

假设你想让AI帮你分析一个Excel文件中的销售数据:

  1. 连接阶段

    • 你的Claude Desktop(主机)连接到Excel读取器MCP服务器

  2. 交互阶段

    • 你告诉Claude:"分析我的销售数据表"

    • Claude通过MCP的资源接口读取Excel文件内容

    • Claude分析数据后,可能想生成一个图表

    • Claude使用MCP的工具接口调用图表生成功能

    • 最后Claude呈现分析结果和图表

整个过程中,Claude不需要直接访问你的文件系统,所有访问都通过受控的MCP接口完成,既安全又高效。

比如你想从一堆波多野结衣老师的视频里找到一个叫“猴子万爆出装教学”的视频,只需要让MCP Sever(自己人)去查询就行,Claude是不会发现那些波老师的视频的,极大地保护了用户隐私。

MCP的实际应用场景

MCP已经在各行各业得到应用:

  1. 软件开发:连接代码库、文档系统,辅助编码和调试

  2. 数据分析:连接各种数据源,进行复杂分析

  3. 内容创作:连接设计工具、CMS系统,辅助创作

  4. 客户服务:连接CRM系统,提供智能客服

  5. 建筑设计:正如前面提到的,连接3D建模工具

免费的MCP Server 网站:

MCP Servers

Open-Source MCP servers | Glama

PulseMCP | Keep up-to-date with MCP

Smithery - Model Context Protocol Registry

Composio MCP Server

https://github.com/punkpeye/awesome-mcp-servers

如何开始使用MCP?

根据你的角色不同,开始使用MCP的方式也不同:

作为用户

如果你只是想使用预建的MCP服务器:

  1. 安装支持MCP的客户端(如Claude Desktop、Cursor、Cline等)

  2. 按照指南配置需要的MCP服务器

  3. 开始使用增强的AI功能

这里以Cursor为例演示配置一个可以连接MySQL的 MCP Server:

1. 在Smithery - Model Context Protocol Registry上搜索mysql:

2. 点击Cursor=>输入数据库连接信息=>点击 Save and Connect

3. 0.46及以下用命令,0.47及以上用json=>选择操作系统=>复制json/npm命令

4. 配置到Cursor=> 保存

5. 等待连接成功(信号灯变成绿色就连接成功了)

6. 开始享用(注意只有 Agent模式才能够使用MCP Server)

作为开发者

如果你想构建自己的MCP服务器:

  1. 选择合适的编程语言SDK(Python、Java等)

  2. 根据MCP规范开发服务器

  3. 测试并部署你的服务器

直观感受

最后通过不同MCP Server的配置来直观地感受一下为什么说MCP就是一个规范

{
    "mcpServers": {
      "fetch-mcp": {
        "command": "npx",
        "args": [
          "-y",
          "@smithery/cli@latest",
          "run",
          "fetch-mcp",
          "--config",
          "{}"
        ]
      }
    }
  }
{
    "mcpServers": {
      "fs": {
        "command": "cmd",
        "args": [
          "/c",
          "npx",
          "-y",
          "@smithery/cli@latest",
          "run",
          "@bunasQ/fs",
          "--config",
          "{}"
        ]
      }
    }
  }
{
    "mcpServers": {
      "excel-reader": {
        "name": "Excel文件读取器",
        "description": "提供通过路径读取Windows本地Excel文件的功能",
        "command": "python",
        "args": ["D:\\VS_WorkSpace\\mcp_class\\read_file_server.py"]
      }
    }
  }

机智如你是不是已经看出端倪了呢?

结语

AI技术的浪潮正在改变各行各业,MCP作为连接AI与外部世界的标准接口,将大大降低AI应用的门槛。无论你是技术专家还是普通用户,了解MCP都能帮助你更好地利用AI工具。

正如开头所说,我希望这篇文章能帮助所有人——无论是技术人员还是非技术人员——降低使用AI技术的门槛,一起享受人工智能带来的美好生活。

这期主要是讲了一些通识性的概念。下一期,我们将从实战角度出发,手动实现一个MCP Server和Client来理解清楚原理。敬请期待!(感兴趣的可以点个关注哦!)


如果你觉得这篇文章对你有帮助,别忘了点赞、分享,并在评论区告诉我们你的使用体验!

### Deepseek MCP 介绍 Deepseek MCP (Model Control Platform) 是一种集成平台,旨在简化大型项目的开发流程并提高效率。该平台集成了多个工具和服务来支持整个软件开发生命周期中的不同阶段[^1]。 #### 平台架构概述 MCP 架构主要由以下几个部分组成: - **Cline**: 提供命令行接口,允许开发者与各种服务交互。 - **Deepseek V3 大型语言模型**: 负责处理自然语言输入,并根据上下文提供相应的编程帮助或自动生成代码片段。 - **GitLab 集成**: 支持版本控制管理以及持续集成/部署(CI/CD),确保团队协作顺畅无阻。 - **VSCode 和 Cline 插件**: 增强IDE功能,使用户能够更便捷地访问和操作MCP资源。 - **Obsidian 文档系统**: 创建统一的知识管理体系,便于维护技术文档和技术债务记录。 ```bash # 安装 VSCode 的 Cline 插件 code --install-extension cline-plugin ``` ### 功能特性 - **自动化代码生成功能**:通过定义好的提示词模板,可以根据具体业务逻辑快速生成高质量的基础代码框架。 - **智能辅助开发环境**:利用 AI 技术理解用户的意图,在编写过程中提供建议和支持;还可以根据已有案例学习新的模式应用于未来项目中去。 - **灵活可扩展的服务组合方式**:不仅限于内置模块间配合工作,也鼓励第三方应用接入形成更加丰富的生态系统。 - **全面覆盖的生命周期管理**:从最初的需求分析到最后的产品发布都有一套完整的解决方案保驾护航。 ### 使用方法 为了更好地理解和掌握如何使用 Deepseek MCP 进行高效开发,请遵循以下指南: 安装必要的依赖项之后,可以通过 `cline` 工具初始化一个新的项目实例: ```bash # 初始化新项目 cline init my_project_name cd my_project_name/ ``` 接着复制一份通用 Obsidian 模板至当前工程目录内,并依据实际情况调整其中的内容以适应特定应用场景的要求。 对于日常工作中涉及到的任务执行,则可以直接调用相应子命令完成诸如构建、测试等一系列常规动作: ```bash # 执行构建过程 cline build ``` 当遇到复杂问题难以解决时,不妨尝试借助 Deepseek V3 来寻求灵感——只需简单描述所面临挑战即可获得针对性指导建议。 最后但同样重要的是保持良好习惯定期提交更改到远程仓库以便追踪进度并与队友分享成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值