[电池SOH估算案例3]: 使用长短时记忆神经网络LSTM来实现锂电池SOH估计的算法学习案例(基于matlab编写)
1.使用牛津锂离子电池老化数据集来完成,并提供该数据集的处理代码,该代码可将原始数据集重新制表,处理完的数据非常好用。
2.提取电池的恒流充电时间,等压升充电时间,极化内阻等变量作为健康特征。
3.使用LSTM来建立电池的SOH估计模型,以特征为输入,以SOH为输出。
4.可帮助将该代码修改为门控循环单元GRU建模
YID:13180725426608063
电池数据处理爱好者
电池SOC(State of Charge)和SOH(State of Health)估算一直是锂电池领域的关键问题之一。对锂电池的准确估计,可以帮助优化电池的充放电策略,延长电池的使用寿命,提高设备的工作效率。本文将介绍一种基于长短时记忆神经网