基于LSTM的锂电池SOH估计算法学习案例及数据处理代码分享

[电池SOH估算案例3]: 使用长短时记忆神经网络LSTM来实现锂电池SOH估计的算法学习案例(基于matlab编写)
1.使用牛津锂离子电池老化数据集来完成,并提供该数据集的处理代码,该代码可将原始数据集重新制表,处理完的数据非常好用。
2.提取电池的恒流充电时间,等压升充电时间,极化内阻等变量作为健康特征。
3.使用LSTM来建立电池的SOH估计模型,以特征为输入,以SOH为输出。
4.可帮助将该代码修改为门控循环单元GRU建模

YID:13180725426608063

电池数据处理爱好者


电池SOC(State of Charge)和SOH(State of Health)估算一直是锂电池领域的关键问题之一。对锂电池的准确估计,可以帮助优化电池的充放电策略,延长电池的使用寿命,提高设备的工作效率。本文将介绍一种基于长短时记忆神经网

### 锂电池SOH概念及其计算方法 #### SOH定义 锂电池的健康状态(State of Health, SOH)通常被用来描述电池当前性能相对于其原始规格或满容量的状态。它是一个百分比指标,表示电池剩余的有效容量与其初始额定容量之间的关系[^1]。 #### 计算方法概述 SOH 的主要计算方式可以分为基于模型的方法和数据驱动的方法两大类: - **基于模型的方法**:通过建立电化学模型或者电路等效模型来模拟电池内部的行为特性,并利用这些模型预测电池的老化程度以及估计SOH 值[^2]。 - **数据驱动的方法**:这种方法依赖于实际运行过程中收集到的数据来进行分析处理,比如采用机器学习算法训练历史数据集从而实现对未来趋势的判断并得出相应的 SOH 结果[^3]。 #### 实际应用中的技术细节 对于具体的实施过程而言,有几种常见的策略用于测量和估算锂离子电池系统的 SOH: 1. 容量测试法:这是最直接但也可能是最具破坏性的手段之一,在特定条件下完全放空再充满整个循环周期之后记录下所测得的实际存储电量作为参考依据进而推导出相对应的比例数值[^4]。 2. 阻抗谱分析法:随着老化现象的发生,内阻会发生变化;因此可以通过在线监测交流信号下的响应特征曲线图样改变情况间接反映出来关于整体状况的信息[^5]。 3. 放电平台电压下降速率检测法:当恒流放电工况持续一段时间以后观察端子间平均工作水平降低速度是否加快也可以成为评判标准的一部分内容[^6]。 以下是Python代码示例展示如何简单地根据已知参数计算理论上的SOH值: ```python def calculate_soh(current_capacity, rated_capacity): soh = (current_capacity / rated_capacity) * 100 return round(soh, 2) rated_capacity = 5000 # mAh 初始标称容量 current_capacity = 4750 # mAh 当前实测容量 soh_value = calculate_soh(current_capacity, rated_capacity) print(f"The calculated SOH is {soh_value}%.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值