题目描述
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
思路:根据前序遍历的特点,第一个数字1就是根结点。扫描中序遍历序列,就可以确定根结点的位置。根据中序遍历的特点,根结点1前面的3个数都是左子树结点的值,跟结点1后面的的数字都是右子树结点的值。这样我们就根据前序遍历和中序遍历找到了左右子树对应的子序列。可以递归的去构建左右子树。
代码实现:
// Definition for binary tree
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};
class Solution {
public:
TreeNode* reConstructBinaryTree(vector<int> pre, vector<int> vin) {
if (pre.empty() || vin.empty() || pre.size() != vin.size())
return NULL;
unsigned int index;
vector<int> left_pre, left_vin, right_pre, right_vin;
TreeNode* root = new TreeNode(pre[0]); //构建根结点
for (unsigned int i = 0; i < vin.size();i++) //查找中序遍历中根结点的位置
{
if (vin[i] == pre[0])
{
index = i;
break;
}
}
for (unsigned int i = 0; i < index;i++)
{
left_pre.push_back(pre[i + 1]); //左子树前序遍历序列
left_vin.push_back(vin[i]); //左子树中序遍历序列
}
for (unsigned int i = index + 1;i < vin.size();i++)
{
right_pre.push_back(pre[i]); //右子树前序遍历序列
right_vin.push_back(vin[i]); //右子树中序遍历序列
}
root->left = reConstructBinaryTree(left_pre, left_vin); //递归构建左子树
root->right = reConstructBinaryTree(right_pre, right_vin); //递归构建右子树
return root;
}
};