蒙特卡洛展开(Monte Carlo Rollout)是在强化学习和搜索算法中使用的一种技术,特别是在蒙特卡洛树搜索(Monte Carlo Tree Search, MCTS)中。
在MCTS中,Rollout通常发生在模拟的后期,当搜索树中的一个节点被访问,但其子节点尚未被完全探索或评估时。为了节省计算资源并快速得到一个对该节点可能价值的估计,算法会执行一个Rollout:从该节点开始,按照某个快速但可能不是最优的策略进行模拟,直到达到一个终止状态(如游戏结束),然后记录下从该节点到终止状态整个路径上的累积回报。
Rollout的目的是为了提供一个快速的、基于采样的价值估计,这个估计可以被用来更新MCTS搜索树中节点的价值。虽然单个Rollout可能不准确,但通过执行大量的Rollouts并对结果进行平均,可以得到一个相当准确的价值估计。
Rollout策略的选择对于MCTS的性能至关重要。过于简单的策略可能会导致价值估计的偏差,而过于复杂的策略则可能会减慢模拟的速度。在实际应用中,通常会选择一种在计算效率和准确性之间取得平衡的策略。