软更新(Soft Update)是一种在强化学习等领域中常用的权重更新策略,特别是在使用目标网络(Target Network)的场景下。与硬更新(Hard Update)不同,软更新不是直接将目标网络的权重替换为在线网络(或称为行为网络、策略网络)的权重,而是将两者进行某种程度的混合或插值。
在软更新中,目标网络的权重会根据一个小的正数因子(通常称为 tau 或τ)来逐渐接近在线网络的权重。这个过程可以表示为:
θ_target = τ * θ_online + (1 - τ) * θ_target_old
【目标网络权重 = tau * 在线网络权重 + (1 - tau) * 目标网络原始权重】
tau 作为软更新参数,控制了目标网络权重更新的速度。在强化学习等领域,特别是使用深度Q网络(DQN)及其变体时,为了稳定学习过程,通常会维护两个网络:一个在线网络来选择动作,另一个目标网络来计算Q值的目标。这两个网络的结构通常是相同的,但它们的权重不同。目标网络的权重是通过软更新从在线网络的权重中逐渐获得的。
这里tau 的值通常在0到1之间。当 tau 接近1时,目标网络的权重更新得更快,更接近于在线网络的权重;而当 tau 接近0时,目标网络的权重更新得更慢,保留了更多原始权重的信息。这种软更新的方式有助于增加学习的稳定性,因为目标网络的权重不会突然发生大的变化。
通过使用软更新策略,算法可以在探索和利用之间取得更好的平衡,从而实现更高效和稳定的学习。
*注意:tau 的选择需要根据具体任务和环境来调整。如果 tau 设置得过大,可能会导致学习过程不稳定;而如果 tau 设置得过小,则可能导致学习目标网络权重更新过慢,影响学习效率。因此,在实际应用中,通常需要通过实验来确定一个合适的 tau 值。