软更新参数:tau(τ)

软更新(Soft Update)是一种在强化学习等领域中常用的权重更新策略,特别是在使用目标网络(Target Network)的场景下。与硬更新(Hard Update)不同,软更新不是直接将目标网络的权重替换为在线网络(或称为行为网络、策略网络)的权重,而是将两者进行某种程度的混合或插值。

在软更新中,目标网络的权重会根据一个小的正数因子(通常称为 tau 或τ)来逐渐接近在线网络的权重。这个过程可以表示为:

θ_target = τ * θ_online + (1 - τ) * θ_target_old

【目标网络权重 = tau * 在线网络权重 + (1 - tau) * 目标网络原始权重】

tau 作为软更新参数,控制了目标网络权重更新的速度。在强化学习等领域,特别是使用深度Q网络(DQN)及其变体时,为了稳定学习过程,通常会维护两个网络:一个在线网络来选择动作,另一个目标网络来计算Q值的目标。这两个网络的结构通常是相同的,但它们的权重不同。目标网络的权重是通过软更新从在线网络的权重中逐渐获得的。

这里tau 的值通常在0到1之间。当 tau 接近1时,目标网络的权重更新得更快,更接近于在线网络的权重;而当 tau 接近0时,目标网络的权重更新得更慢,保留了更多原始权重的信息。这种软更新的方式有助于增加学习的稳定性,因为目标网络的权重不会突然发生大的变化。

通过使用软更新策略,算法可以在探索和利用之间取得更好的平衡,从而实现更高效和稳定的学习。

*注意:tau 的选择需要根据具体任务和环境来调整。如果 tau 设置得过大,可能会导致学习过程不稳定;而如果 tau 设置得过小,则可能导致学习目标网络权重更新过慢,影响学习效率。因此,在实际应用中,通常需要通过实验来确定一个合适的 tau 值。

### 吴恩达讲解的小批量训练和软更新强化学习中的应用 #### 小批量训练的应用 小批量训练(mini-batch training)是一种提高模型稳定性和效率的技术。相比于单样本梯度下降,这种方法能够利用更多的数据样本来计算平均梯度,从而减少噪声并加速收敛过程。对于强化学习而言,这意味着可以更加稳健地调整策略参数。 具体来说,在每次迭代中不是只基于单一的状态-动作对来更新权重,而是收集一定数量的经验回放(experience replay),形成一个小批次的数据集来进行集体更新操作[^1]。 ```python for episode in range(num_episodes): state = env.reset() done = False while not done: action = select_action(state) # 根据当前策略选择动作 next_state, reward, done, _ = env.step(action) memory.push(state, action, next_state, reward) # 存储经验到记忆库 if len(memory) > batch_size: transitions = memory.sample(batch_size) # 对采样的转换进行批处理 batch = Transition(*zip(*transitions)) optimize_model(batch) # 使用这批数据优化模型 state = next_state ``` 这段伪代码展示了如何在一个典型的强化学习循环里实施小批量训练机制。当累积足够的经历后,就从中随机抽取一批次作为输入给`optimize_model()`函数执行反向传播等步骤完成一次完整的训练周期[^4]。 #### 软更新策略的作用 软更新(soft update)是指在网络结构保持不变的情况下逐步替换旧的目标网络参数而不是一次性完全覆盖它们的方法。这有助于平滑目标值的变化趋势,使得整个系统的动态行为更为连贯一致而不至于因为突然间引入大量新信息而导致性能波动过大。 通常情况下会设定一个小于1的比例系数&tau;(0<&tau;≤1),表示每一步仅用一小部分最新的估计去修正现有的预测结果: \[ \theta_{\text{target}} \leftarrow (1-\tau)\cdot\theta_{\text{target}}+\tau\cdot\theta \] 其中θ代表源网络的参数集合;而θ_target则是对应位置上待同步的目的端数值。 这种做法特别适用于那些具有延迟反馈特性的场景下——比如玩视频游戏时可能要经过若干帧之后才能确切知道之前采取某个行动的好坏程度究竟几何。因此借助这种方式可以让决策过程变得更加谨慎可靠[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值