Scaled Dot-Product Attention

本文详细阐述了ScaledDot-ProductAttention在Transformer模型中的作用,涉及点积计算、缩放处理和softmax归一化,强调了其在动态关注输入序列依赖关系中的核心功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Scaled Dot-Product Attention 是Transformer模型中核心的注意力机制之一,它的基本思想是通过计算query(查询)向量与一组key(键)向量之间的点积相似度,并通过softmax函数转换为概率分布,然后用这个概率分布加权value(值)向量,从而聚焦在最重要(相似度最高)的信息上。

Scaled Dot-Product Attention 最本质最重要的步骤包括三个核心计算部分:

  1. 点积计算(Dot Product): 首先,将查询(Query)矩阵 Q 和键(Key)矩阵 K 进行点积运算 QK^T。这一步骤计算了查询向量和所有键向量之间的相似度得分,即衡量查询向量与每一个位置上的键向量有多匹配。

  2. 缩放(Scaling): 由于随着维度 d_k 的增加,点积的结果也会迅速增大,可能导致softmax函数梯度变得极小,影响训练效果。因此,对点积结果除以 √d_k 进行缩放,这样可以保持各个位置上的注意力得分在softmax之前具有相近的尺度,确保模型收敛性能更好。

     
  3. Softmax归一化(Softmax Normalization): 对缩放后的点积结果应用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值