1 基础知识
堆优化版dijkstra算法的关键步骤:
- 初始化距离数组为正无穷,然后d[1] = 0。
- 定义集合S,表示当前已经确定到1号结点的最短距离的结点们。
- 定义小根堆,插入1号结点和d[1]。
- 如果小根堆不为空:弹出堆顶,记作t_node结点和t_dist。如果结点t_node在集合S中,则continue;否则将它加入到集合S中,并进行后续操作。看看结点t_node能走到哪儿(比如它能走到结点x),如果dist[x] > t_dist + edge[t_node][x],则用它去更新dist[x],并将结点x和距离dist[x]插入到堆中。
- 继续进行操作4,直至小根堆为空。
- dist[n],即为1号结点到n号结点的最短距离。
堆优化版dijkstra算法的时间复杂度为O(mlogn)。
2 模板
y总的模板,但这个加边函数不太习惯,暂时不考虑使用它
typedef pair<int, int> PII;
int n; // 点的数量
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储所有点到1号点的距离
bool st[N]; // 存储每个点的最短距离是否已确定
// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1}); // first存储距离,second存储节点编号
while (heap.size())
{
auto t = heap.top();
heap.pop();
int ver = t.second, distance = t.first;
if (st[ver]) continue;
st[ver] = true;
for (int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > distance + w[i])
{
dist[j] = distance + w[i];
heap.push({dist[j], j});
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}
3 工程化
y总dijkstra()算法模板
注意的是:需要一个st数组,用来记录这个结点a的最短路是否已经被确定,也即dist[a]是否已经被计算出来了!
题目1:求1号结点到n号结点的最短距离。
#include <iostream>
#include <cstring>
#include <queue>
#include <vector>
using namespace std;
const int N = 1e5 + 10;
typedef pair<int, int> PII;
int n, m;
vector<vector<PII>> g; //first表示结点,second表示边的权重
int dist[N];
bool st[N];
int dijkstra() {
//初始化距离数组
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> h;
h.push(make_pair(0,1));//first表示到1号结点的距离,second表示结点
while (!h.empty()) {
//确定当前结点中,不在集合S且距离结点1最近的结点。记作curr_node。
auto [da, a] = h.top();
h.pop();
if (st[a]) continue; //如果a到起点的最短路径已经被求解出来了(即dist[a]已经被计算出来了),则跳过
st[a] = true; //将它加入到集合中
for (auto [b, w] : g[a]) {
if (dist[b] > da + w) {
dist[b] = da + w;
h.push(make_pair(dist[b], b));
}
}
}
if (dist[n] == 0x3f3f3f3f) return -1;
else return dist[n];
}
int main() {
cin >> n >> m;
g.resize(n + 10);
int a, b, c;
while (m--) {
cin >> a >> b >> c;
g[a].emplace_back(make_pair(b,c));
}
cout << dijkstra() << endl;
return 0;
}
灵神dijkstra()算法模板 , 但为啥在本地调不通呢???
//C++版本
typedef pair<int,int> PII;
vector<vector<PII>> g(n + 10); //n为结点数
//first表示b,second表示w
for (int i = 0; i < edges.size(); ++i) {
auto& e = edges[i];
int a = e[0], b = e[1], w = e[2];
g[a].empalce_back(b, w);
g[b].emplace_back(a, w);
}
//求从0号结点到所有结点的最短路
vector<int> dis(n, 0x3f3f3f3f);
dis[0] = 0;
priority_queue<PII, vector<PII>, greater<PII>> pq; //小根堆
pq.emplace(0,0);
while (!pq.empty()) {
auto [dx, x] = pq.top();
pq.pop();
if (dx > dis[x]) continue;
for (auto [y, w] : g[x]) {
int new_dis = dx + w;
if (new_dis < dis[y]) {
dis[y] = new_dis;
pq.emplace(new_dis, y);
}
}
}
//最终dis就是最短路
如下python3版本已验证OK,
#python3版本
g = [[] for _ in range(n)] #n是结点数
for [x, y, w] in edges:
g[x].append([y, w])
g[y].append([x, w])
dis = [inf] * n
dis[0] = 0
h = [(0, 0)]
while h:
dx, x = heappop(h)
if dx > dis[x]:
continue
for y, w in g[x]:
new_dis = dx + w
if new_dis < dis[y]:
dis[y] = new_dis
heappush(h, (new_dis, y))
#最终dis就是最短路
4 训练
题目1:1129热浪
C++代码如下,
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
const int N = 2510;
int n, m;
vector<vector<pair<int,int>>> g; //first表示next_node,second表示w
int dist[N];
bool st[N];
int snode, enode;
void dijkstra() {
memset(dist, 0x3f, sizeof dist);
dist[snode] = 0;
priority_queue<pair<int, int>, vector<pair<int,int>>, greater<pair<int,int>>> h;
h.push(make_pair(0, snode));
while (!h.empty()) {
//确定当前结点中,不在集合s且距离结点snode最近的结点。记作cnode
auto t = h.top();
h.pop();
int cdist = t.first, cnode = t.second;
if (st[cnode]) continue; //如果cnode已经被确定是最小路径上的结点了,则跳过
st[cnode] = true; //将它加入到集合中
for (auto [next_node, w] : g[cnode]) {
if (dist[next_node] > cdist + w) {
dist[next_node] = cdist + w;
h.push(make_pair(dist[next_node], next_node));
}
}
}
return;
}
int main() {
cin >> n >> m >> snode >> enode;
g.resize(n + 10);
for (int i = 1; i <= m; ++i) {
int a, b, c;
cin >> a >> b >> c;
g[a].emplace_back(b, c);
g[b].emplace_back(a, c);
}
//求snode到enode的最短距离
dijkstra();
cout << dist[enode] << endl;
return 0;
}
题目2:100276最短路径中的边
C++代码如下,
class Solution {
public:
vector<bool> findAnswer(int n, vector<vector<int>>& edges) {
vector<vector<tuple<int, int, int>>> g(n);
for (int i = 0; i < edges.size(); i++) {
auto& e = edges[i];
int x = e[0], y = e[1], w = e[2];
g[x].emplace_back(y, w, i);
g[y].emplace_back(x, w, i);
}
vector<long long> dis(n, LLONG_MAX);
dis[0] = 0;
priority_queue<pair<long long, int>, vector<pair<long long, int>>, greater<>> pq;
pq.emplace(0, 0);
while (!pq.empty()) {
auto [dx, x] = pq.top();
pq.pop();
if (dx > dis[x]) {
continue;
}
for (auto [y, w, _] : g[x]) {
int new_dis = dx + w;
if (new_dis < dis[y]) {
dis[y] = new_dis;
pq.emplace(new_dis, y);
}
}
}
vector<bool> ans(edges.size());
// 图不连通
if (dis[n - 1] == LLONG_MAX) {
return ans;
}
// 从终点出发 DFS
vector<int> vis(n);
function<void(int)> dfs = [&](int y) {
vis[y] = true;
for (auto [x, w, i] : g[y]) {
if (dis[x] + w != dis[y]) {
continue;
}
ans[i] = true;
if (!vis[x]) {
dfs(x);
}
}
};
dfs(n - 1);
return ans;
}
};