一、离散时间傅里叶变换(DTFT)
在时间连续域中,信号一般用带有时间变量的函数表示,系统则用微分方程表示。在频域中,则使用傅里叶变换或拉普拉斯变换表示。
在时间离散域中,信号一般用序列表示,系统则用差分方程表示。在频域中,则使用序列的傅里叶变换或Z变换表示。
时间连续模拟信号的傅里叶变换会得到连续的频域信号。那么时间离散信号(序列)的傅里叶变换呢?
二、离散傅里叶变换
作用:计算机实现傅里叶变换的方法
参考博文的链接:
离散傅里叶变换(DFT)及快速傅里叶变换(FFT) - 知乎 (zhihu.com)
傅里叶变换的公式为:
真实世界是连续的,可是计算机永远只能描述离散的点,采集离散的信号。就需要用到采样这个技术。采样就是在离散世界里描述连续的图像信息的手段。
2.1 采样
对上述的内容总结:
知识补充:角频率和频率
角频率,也称圆频率,表示单位时间内变化的相角弧度值。角频率是描述物体振动快慢的物理量,与振动系统的固有属性有关,常用符号ω表示。在国际单位制中,角频率的单位是弧度/秒(rad/s)。可以理解我为每秒转了多少圈,这个相当于是频率
物质在单位时间内完成周期性变化的次数叫做频率,常用f表示,单位为Hz。
三、快速傅里叶变换
作用:使用复杂度较小的方法计算傅里叶变换。(离散傅里叶变换的计算复杂度高)
FFT正如名字的含义,快速计算傅里叶变换。据测试,快速傅里叶代码的执行时间比傅里叶代码要快1000倍。使用单位根计算点值表达式叫DFT(离散傅里叶变换)复杂度n^2,FFT是其优化版复杂度nlogn。直接计算DFT的计算复杂度和点数N的平方成正比,当N较大时,计算量太大。因此,FFT仅仅是降低DFT计算复杂度的各种快速DFT算法的总称。
参考博文:
离散傅里叶(DFT) 与 快速傅里叶(FFT)_离散傅里叶变换和快速傅里叶变换的关系-CSDN博客
时域的卷积可以转换为频域的乘积
离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)的原理。其中,DTFT最明显的特征是将时域离散信号变换为频域连续信号,DFT是在一个采样角频率范围内对DTFT得到的频域连续信号的等间隔N点采样,而FFT仅仅是在DFT基础上简化复杂度后的各种算法总称。