YOLOV8 兼容适配昇腾NPU

YOLOV8 兼容适配昇腾NPU

前提:

# 已经安装好对应显卡兼容的torch_npu插件,且通过拉取源码安装torchvision_npu
# 在项目启动入口上引入这俩个包
from transformers import is_torch_npu_available
if is_torch_npu_available():
    import torch_npu
    import torchvision_npu

基本代码兼容:

import torch
from transformers import is_torch_npu_available

# 在全局调用获取torch设备的时候,进行如下兼容,0可以切换,若有多个显卡的话
def get_yolo_device(cls):
    """
    获取有效的设备进行训练
    """
    # 多卡随机选择
    device_count = device_id = 0
    if torch.cuda
### 配置环境 为了使YOLOv8能够在NPU上顺利运行,首先要解决的是配置适合该模型的运行环境。这涉及到硬件和软件两方面的准备。对于深度学习模型而言,其运行所需环境较难配置,因为这些模型通常是基于某些特定框架编写的,如PyTorch、TensorFlow等[^1]。然而,针对NPU这样的特殊计算平台,直接在其上面安装完整的深度学习框架并不现实。 因此,建议采用轻量级推理引擎来替代原生框架,例如RKNN Toolkit专为Rockchip系列芯片设计,能够有效支持多种主流网络架构并提供良好的兼容性和性能表现。通过使用此类工具包,可以在不牺牲太多精度的情况下显著减少资源消耗,从而更好地适配嵌入式设备上的应用需求。 ### 转换模型格式 完成环境搭建之后,则需关注到具体的模型转换工作上来。以YOLOv8为例,在训练阶段结束后会得到`.pt`格式的权重文件;但是这类文件并不能被NPU直接识别加载。此时就需要借助于专门用于模型转化的工具——比如ONNX(Open Neural Network Exchange),它允许不同AI框架之间交换神经网路模型定义,并且提供了丰富的API接口方便开发者操作。 具体流程如下: ```bash # 将原始pytorch模型导出成onnx格式 python export.py --weights yolov8.pt --include onnx ``` 接着利用RKNN-Toolkit提供的命令行或者Python API进一步将上述获得的中间表示形式转化为最终能在目标平台上执行的形式: ```python from rknn.api import RKNN rknn = RKNN() ret = rknn.load_onnx('yolov8.onnx') if ret != 0: print('Load ONNX model failed!') exit(ret) ret = rknn.build(do_quantization=True, dataset='./dataset.txt') # 可选参数do_quantization开启量化加速 if ret != 0: print('Build RKNN model failed!') exit(ret) ret = rknn.export_rknn('./yolov8.rknn') if ret != 0: print('Export RKNN model failed!') exit(ret) ``` ### 性能优化方法 最后关于性能调优方面,考虑到实际应用场景中对响应速度的要求较高,所以有必要采取措施提升检测效率。一方面可以通过调整输入图像尺寸降低分辨率实现快速预览效果;另一方面则是充分利用硬件特性实施混合精度运算或是INT8量化等方式达到更好的平衡点。此外还有诸如剪枝、蒸馏等一系列高级技术手段可供探索尝试。 综上所述,要在NPU上成功部署YOLOv8不仅考验着工程师们的技术功底同时也离不开细致耐心的态度去不断试验改进直至找到最优解法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值