1 network/graph
图(graph),也称网络(Network),是描述相互作用实体的复杂系统的通用语言。
Graph广泛存在于真实世界的多种场景中,即节点和边的集合。现代社会人们构建了大量的网络系统, 如计算机网络、物联网、通信网络、交通网络、电力网络、商业和金融网络以及社会关系网络等,除此之外,我们最常见的一张图片、一个句子也可以抽象地看做是一个图模型的结构,图结构可以说是无处不在。
(1)Networks (also known as Natural Graphs)
- 社会(Society )是70多亿人的集合;
- 通信系统(Communication systems)连接了各种电子设备;
- 基因/蛋白质( genes/proteins)之间的相互作用调节着生命;
- 我们的思想( thoughts)隐藏在大脑中数十亿神经元之间的连接中;
(2) Information graphs
- 信息/知识(Information/knowledge)是有组织和链接的;
- 场景图(Scene graphs):描述了场景中物体之间的关系;
- 相似网络(Similarity networks):取数据,连接相似点;
以上,关于两种类型网络的定义,二者之间的界限是模糊的。
这些网络不但节点和连线数量众多、结构复杂, 而且其拓扑和属性也会随时间发生变化。随着越来越多的结构化和半结构化的数据变得可用,能够挖掘特征的机器学习的方法变得越来越有价值,能够有效挖掘、学习数据规律的重要性也在增加。这些图数据都是多关系的、动态的并且也是大规模的。
大量网络系统在提高人们生产效率和生活质量的同时也带来很多危害, 如网络病毒传播、电力网络故障引起的大面积停电, 通信系统中断引起的交通系统瘫痪等。因此对这些网络进行有效的分析和干预成为重要的科学问题, 而结合可视化技术的网络数据分析也成为解决该问题的主要途径。
有关图的理论、方法都已经有了大量的研究,以及基于图的不同的机器学习方法在不同领域的应用,一些常见的课题包括:
- 学习和挖掘算法(Learning and mining algorithms)
- 嵌入和因数分解方法(Embeddings and factorization methods)
- 动态复杂网络学习(Learning with dynamic and complex networks)
- 统计和概率的方法(Statistical and probabilistic methods)
- 理论(Theory)
近两年,基于图数据机器学习的应用,大致有:
- 生物医学和医疗网络( Biomedicine and medical networks
- 社会网络分析 (Social network analysis)
- 万维网 (The World Wide Web)
- 神经科学和神经网络 (Neuroscience and neural networks)
- 交通系统和物理基础设施 (Transportation systems and physical infrastructure)
- 知识图谱 (Knowledge graphs)
- 推荐系统 (Recommender systems)