为什么定积分可以求面积?

1. 定积分是怎么定义的?

在这里插入图片描述
在这里插入图片描述

按照现在的语言就是 ∫ a b f ( x ) d x = ∑ f ( x ) d x \int_a^bf(x)dx=\sum f(x)dx abf(x)dx=f(x)dx,所以定积分最初是被定义成面积的。

2. 牛顿-莱布尼兹公式

∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_a^bf(x)dx=F(b)-F(a) abf(x)dx=F(b)F(a)
定积分可以求面积,我们已经知道了,但是用于计算定积分的最出名的牛顿-莱布尼兹公式是怎么被牛顿、莱布尼兹发现的?

牛顿搞物理研究,就是喜欢求导数。

给位移求导数得到速度,给速度求导数得到加速度。

搞数学研究也这么搞,他想给面积求下导数:
在这里插入图片描述
接下来,我们对面积函数 A ( x ) A(x) A(x)来求导:
A ′ ( x ) = d A ( x ) d x = A ( x + d x ) − A ( x ) d x = f ( x ) d x d x = f ( x ) A'(x)=\frac{dA(x)}{dx}=\frac{A(x+dx)-A(x)}{dx}=\frac{f(x)dx}{dx}=f(x) A(x)=dxdA(x)=dxA(x+dx)A(x)=dxf(x)dx=f(x)

所以牛顿得出结论,面积的导数就是曲线,曲线的原函数就是面积。

对牛顿-莱布尼兹公式,在这里给出一个直观的说明:
在这里插入图片描述

本文内容,均转载自“马同学高等数学”微信公众号,从知乎追到微信,真的受益颇多!
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值