【初阶数据结构与算法】第一篇:算法中的时间复杂度和空间复杂度

⭐️本篇博客我要给大家分享一下算法中的时间复杂度和空间复杂度。希望对大家有所帮助。
⭐️ 博主码云gitee链接:码云主页

目录

前言

🌏一、算法的复杂度

🌏二、时间复杂度

         🍯1.时间复杂度概念

         🍯2.大O的渐进表示法

        🍍示例一: 

        🍍示例二:

        🍍示例三:

        🍍示例四:

        🍍实例五:

        🍍实例六;

        🍍实例七:

        🍍实例八:

        🍍实例九:

🌏三、空间复杂度

        🍍实例一: 

        🍍实例二:

         🍍实例三:

         🍍实例四:

🌏四、常见复杂度对比

🌏总结


前言


🌏一、算法的复杂度

🍤算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

🍤时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间

🌏二、时间复杂度

          🍯1.时间复杂度概念

 🍤时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

🍤即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

         🍯2.大O的渐进表示法

推导大O阶方法:

       🍤 1、用常数1取代运行时间中的所有加法常数。

       🍤 2、在修改后的运行次数函数中,只保留最高阶项。

       🍤 3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大o阶。

        🍍示例一: 

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
    for (int j = 0; j < N ; ++ j)
    {
        ++count;
    }
}
for (int k = 0; k < 2 * N ; ++ k)
{
    ++count;
}
int M = 10;
while (M--)
{
    ++count;
}
    printf("%d\n", count);
}

 🍤 基本执行次数:

 F(N)=N2+2*N +10       

 🍤使用大O的渐进表示法以后,Func1的时间复杂度为:

 o(N^{2})

         🍍示例二:

// 计算Func2的时间复杂度?
void Func2(int N)
{
    int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
    ++count;
}
int M = 10;
while (M--)
{
    ++count;
}
    printf("%d\n", count);
}

 🍤使用大O的渐进表示法以后,Func2时间复杂度为:

 o(N)

 所有N前面的常数都要省略,所以2要省略,因为两个无限大的数还是作为一个无限大

        🍍示例三:

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
    int count = 0;
for (int k = 0; k < M; ++ k)
{
    ++count;
}
for (int k = 0; k < N ; ++ k)
{
    ++count;
}
    printf("%d\n", count);
}

 🍤使用大O的渐进表示法以后,Func3时间复杂度为:

 o(N+M)

因为无法确定N和M的大小,所以我们要取最坏的情况来看

        🍍示例四:

// 计算Func4的时间复杂度?
void Func4(int N)
{
    int count = 0;
for (int k = 0; k < 100; ++ k)
{
    ++count;
}
    printf("%d\n", count);
}

 🍤使用大O的渐进表示法以后,Func4时间复杂度为:

 o(1)

k是一个常数,所以忽略不计

         🍍实例五:

// 计算Func5的时间复杂度?
const char * Func5 ( const char * str, int character );

 🍤使用大O的渐进表示法以后,Func5时间复杂度为:

 o(N)

因为不确定字符串的长度是多少,所以有一个N

         🍍实例六;

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i-1] > a[i])
            {
            Swap(&a[i-1], &a[i]);
            exchange = 1;
            }
        }
        if (exchange == 0)
            break;
    }
}

 🍤使用大O的渐进表示法以后,Func6时间复杂度为:

o(N^{2}​)

执行次数为(n-1)+…2+1
这是一个等查数列求和,结果是n *(n-1)/2。
最高阶项是N ^ 2,所以时间复杂度是O(N ^ 2) 

         🍍实例七:

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
    assert(a);
    int begin = 0;
    int end = n;
    while (begin < end)
    {
        int mid = begin + ((end-begin)>>1);
        if (a[mid] < x)
            begin = mid+1;
        else if (a[mid] > x)
            end = mid;
        else
            return mid;
    }
    return -1;
}

🍤使用大O的渐进表示法以后,Func7时间复杂度为:

 o(logN)

🍤此算法是二分查找:最坏的情况是一直找不到,然后就要一直分,知道剩下1个数不可再分为止。

🍤所以多处以下的公式:

        N/2/2/2/2.../2/2=1假设除了n次2

        N/2^n=1  => N=2^n 

        n = log2 (N)

        所以计算得到时间复杂的是o(logN)

只有以2为底的对数,才可以简写,以其他数为底数的不简写

         🍍实例八:

// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
    if(0 == N)
        return 1;
    return Fac(N-1)*N;
}

🍤使用大O的渐进表示法以后,Func8时间复杂度为:

 o(N)

这样一共递归调用了N次,所以时间复杂度是O(N)

 递归算法时间复杂度计算:

        🍤1、每次函数调用是O(1),那么就看他的递归次数

        🍤2、每次函数调用不是O(1),那么就看他的递归调用中次数的累加

         🍍实例九:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
    if(N < 3)
        return 1;
    return Fib(N-1) + Fib(N-2);
}

🍤使用大O的渐进表示法以后,Func9时间复杂度为:

 o(2^N)

每次函数递归调用是O(1),所以就看递归次数。递归次数是N,每次是两个,所有就是N个2相乘

 第一层是一次,第二层是2次,第三层是4次以此类推,就是2^N次方

🌏三、空间复杂度

🍤空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度。
🍤空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大О渐进表示法。
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

        🍍实例一: 

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i)
        {
            if (a[i-1] > a[i])
            {
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }
        if (exchange == 0)
            break;
    }
}

🍤实例1使用了常数个额外空间,所以空间复杂度为O(1) 

        🍍实例二:

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
    if(n==0)
        return NULL;
    long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n ; ++i)
    {
        fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
    }
    return fibArray;
}

🍤实例2动态开辟了N个空间,空间复杂度为O(N)

         🍍实例三:

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
    if(N == 0)
        return 1;
    return Fac(N-1)*N;
}

🍤实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

         🍍实例四:

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
    if(N < 3)
        return 1;
    return Fib(N-1) + Fib(N-2);
}

 🍤首先执行Fib(N-1),一步一步执行,然后执行完后一步一步返回销毁,然后再执行Fib(N-2),由于栈是向下伸展的,所以两次都是使用同一块空间,所以格外开辟的空间是N-1次。

总之就是函数栈帧使用完后要销毁,空间复杂度为O(N)。

🌏四、常见复杂度对比

453542O(1)常数阶
3n+4O(N)线性阶
3n^2+4n+5O(N^2)平方阶
3log(2)n+4O(logn)对数阶
2n+3nlog(2)n+14O(nlogn)nlogn阶
n^3+2n^2+4n+6O(N^3)立方阶
2^nO(2^N)指数阶


🌏总结

        🍤时间复杂度:看次数,时间是累计的

        🍤空间复杂度:看个数,空间回收以后可以重复利用

  • 10
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 16
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

penguin_bark

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值