1.题目
给你一个非负整数 x
,计算并返回 x
的 算术平方根 。
由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。
**注意:**不允许使用任何内置指数函数和算符,例如 pow(x, 0.5)
或者 x ** 0.5
。
示例 1:
输入:x = 4
输出:2
示例 2:
输入:x = 8
输出:2
解释:8 的算术平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。
2.思路
- 初始化左边界
left
为 0,右边界right
为x
,用于定义搜索范围。 - 通过二分查找的方式,计算中间值
mid
,并求出mid
的平方square
。 - 如果
square
等于x
,直接返回mid
,因为它就是x
的整数平方根。 - 如果
square
大于x
,说明当前的mid
太大,更新右边界right = mid - 1
,继续在较小的范围内搜索。 - 如果
square
小于x
,说明当前的mid
太小,更新左边界left = mid + 1
,继续在较大的范围内搜索。 - 当搜索结束时,返回
right
,它是平方小于或等于x
的最大整数,即x
的整数平方根。
3.代码
class Solution {
public:
int mySqrt(int x) {
long long left = 0, right = x;
while(left<=right){
long long mid = left+(right-left)/2;
long long square = mid*mid;
if(square == x){
return mid;
}else if(square>x){
right = mid-1;
}else{
left = mid+1;
}
}
return right;
}
};