构建一个以RAG技术为核心功能的基于自建知识库的本地大模型(二)环境搭建篇

提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

随着人工智能的不断发展,大语言模型这门技术也越来越重要,很多人和企业都开始将大语言模型投入生产之中。本文开始将介绍基于自建知识库的本地大模型的具体实现方式。博主搭建了一个基于Langchain、Ollama、Chroma矢量数据库以及千帆大模型平台的框架示例。


提示:以下是本篇文章正文内容,下面案例可供参考

一、框架分工

  • 利用Langchain库构建AI组件,负责处理自然语言理解和生成任务。
  • 集成Ollama作为基础的聊天机器人框架,提供用户界面和交互逻辑。
  • 使用Chroma矢量数据库存储与检索知识或上下文信息。这为自建知识库提供了储存空间并且有助于机器人在对话中保持连贯性,理解并记忆多次会话中的相关信息。
  • 通过千帆大模型平台进行大模型微调,提高大模型效率。

二、Langchain下载

前提:你已经有python开发系统

#在终端中
pip install langchain
pip install langchain-community
pip install langchain
### 使用 DeepSeek 构建 RAG 公司知识库大规模模型实施方案 #### 一、构建基础环境准备 为了顺利实施基于 DeepSeek 的 RAG (Retrieval-Augmented Generation) 知识库建设,需先准备好必要的软件和技术栈。对于 Python 和 JavaScript 开发者来说,在此阶段会涉及到安装特定版本的 Python 解释器以及 Node.js 平台,并配置好虚拟环境来管理依赖包[^1]。 ```bash # 创建并激活Python虚拟环境 python3 -m venv myenv source myenv/bin/activate # Linux/MacOS 或 win用户使用 `myenv\Scripts\activate` # 安装Node.js所需模块 npm init -y npm install deepseek-client ``` #### 、数据预处理与索引建立 针对公司内部文档资料或其他形式的信息源进行清洗整理,转换成结构化的文本片段作为输入给定至向量化服务;之后利用这些经过编码后的嵌入(embedding),通过 FastGPT 提供的功能创建高效的索引来支持后续查询操作[^2]。 ```json // JSON格式示例:用于描述待索引条目 { "id": "doc_001", "content": "这是来自某技术博客的文章摘要..." } ``` #### 三、集成检索机制到对话流程中 借助于像 FastGPT 这样的工具所提供的 API 接口,可以很容易地把之前已经设置好的索引接入进来形成闭环式的交互体验——当用户提问时,系统能够自动从海量的历史记录里找到最匹配的回答依据。 ```javascript const { Client } = require('deepseek-client'); async function queryKnowledgeBase(questionText){ const client = new Client(); try { let response = await client.search({ indexName: 'company_kb', textQuery: questionText, topK: 5 // 返回前五个相似度最高的结果 }); console.log(response); } catch(error){ console.error(`Error during KB search: ${error.message}`); } } ``` #### 四、应用高级特性提升性能表现 除了基本功能外,还可以考虑引入诸如混合检索(Hybrid Search), 向量融合(Vector Fusion), 自动化Idea生成等一系列增值服务以进一步优化整个系统的效率和用户体验感。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值