提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
随着人工智能的不断发展,大语言模型这门技术也越来越重要,很多人和企业都开始将大语言模型投入生产之中。本文开始将介绍基于自建知识库的本地大模型的具体实现方式。博主搭建了一个基于Langchain、Ollama、Chroma矢量数据库以及千帆大模型平台的框架示例。
提示:以下是本篇文章正文内容,下面案例可供参考
一、框架分工
- 利用Langchain库构建AI组件,负责处理自然语言理解和生成任务。
- 集成Ollama作为基础的聊天机器人框架,提供用户界面和交互逻辑。
- 使用Chroma矢量数据库存储与检索知识或上下文信息。这为自建知识库提供了储存空间并且有助于机器人在对话中保持连贯性,理解并记忆多次会话中的相关信息。
- 通过千帆大模型平台进行大模型微调,提高大模型效率。
二、Langchain下载
前提:你已经有python开发系统
#在终端中
pip install langchain
pip install langchain-community
pip install langchain