7.4 期望值和方差

本文详细探讨了期望值的计算及其线性性质,通过实例解释了如何计算两个骰子点数之和的期望值。同时,介绍了几何分布的期望值,并讨论了独立随机变量的期望值乘积性质。此外,还简述了方差的概念及其与期望值的关系,包括比安梅公式和切比雪夫不等式的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7.4 期望值和方差

期望值

E ( X ) = ∑ s ∈ S p ( s ) X ( s ) E(X)=\sum_{s \in S}p(s)X(s) E(X)=sSp(s)X(s)

例如一个点数从1到6的骰子,其投掷一次的期望值是
E ( X ) = 1 ⋅ 1 6 + 2 ⋅ 1 6 + 3 ⋅ 1 6 + 4 ⋅ 1 6 + 5 ⋅ 1 6 + 6 ⋅ 1 6 E(X)=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6} E(X)=161+261+361+461+561+661
不用神话期望值,其本质就是对应的值乘以概率的和,所有的值要布满样本空间。


随机变量与期望值

随机变量这个词比较迷惑性,可能是英译中的时候搞出来的,所以这里可以将其理解为函数。

将原本的样本空间中的字集经过函数处理后所得到的值,比如掷两个骰子,两个骰子的和。原本的样本空间和其所对应的函数处理结果如下所示,函数使用X表示:

X((1,1))=2
X((1,2))=X((2,1))=3
X((1,3))=X((3,1))=X((2,2))=4
X((1,4))=X((4,1))=X((2,3))=X((3,2))=5
X((1,5))=X((5,1))=X((2,4))=X((4,2))=X((3,3))=6
X((1,6))=X((6,1))=X((2,5))=X((5,2))=X((3,4))=X((4,3))=7
X((2,6))=X((6,2))=X((3,5))=X((5,3))=X((4,4))=8
X((3,6))=X((6,3))=X((4,5))=X((5,4))=9
X((4,6))=X((6,4))=X((5,5))=10
X((5,6))=X((6,5))=11
X((6,6))=12

其中原本的样本空间(1,1),(1,2),(2,1)经过函数处理后,构成了X的样本空间X(S)
( r , p ( X = r ) ) , 代 表 r ∈ X ( S ) , p ( X = r ) 代 表 X = r 的 概 率 。 (r,p(X=r)),代表r \in X(S),p(X=r)代表X=r的概率。 (r,p(X=r))rX(S)p(X=r)X=r

在上面的基础上,问投出的值的概率各是多少?

p(X=2)=p(X=12)=1/36
p(X=3)=p(X=11)=2/36
p(X=4)=p(X=10)=3/36
p(X=5)=p(X=9)=4/36
p(X=6)=p(x=8)=5/36
p(X=7)=6/36

这里的p(X=2)代表上面两个骰子的和为2的情况,看到只有1种,X((1,1))p(X=12)同理,X((6,6))

随机变量其实本质就是在之前所有样本空间的基础上,使用函数,修改p(X=r)时,r的值。

投出的值的期望值的计算就按照期望值的定义走就行了:
E ( X ) = 2 ⋅ 1 36 + 3 ⋅ 2 36 + 4 ⋅ 3 36 + 5 ⋅ 4 36 + 6 ⋅ 5 36 + 7 ⋅ 6 36 + 12 ⋅ 1 36 + 11 ⋅ 2 36 + 10 ⋅ 3 36 + 9 ⋅ 4 36 + 8 ⋅ 5 36 = 7 E(X)=2 \cdot \frac{1}{36}+3 \cdot \frac{2}{36}+ 4 \cdot \frac{3}{36}+ 5 \cdot \frac{4}{36}+6 \cdot \frac{5}{36}+7 \cdot \frac{6}{36}\\ +12 \cdot \frac{1}{36}+11 \cdot \frac{2}{36}+ 10 \cdot \frac{3}{36}+ 9 \cdot \frac{4}{36}+8 \cdot \frac{5}{36} \\ =7 E(X)=2361+3362+4363+5364+6365+7366+12361+11362+10363+9364+8365=7

期望值的线性性质

在确定结果的情况下,可不可以试试单独计算两个骰子的期望值,然后相加呢?
E ( X 1 ) = 1 ⋅ 1 6 + 2 ⋅ 1 6 + 3 ⋅ 1 6 + 4 ⋅ 1 6 + 5 ⋅ 1 6 + 6 ⋅ 1 6 = 7 2 E ( X 2 ) = 1 ⋅ 1 6 + 2 ⋅ 1 6 + 3 ⋅ 1 6 + 4 ⋅ 1 6 + 5 ⋅ 1 6 + 6 ⋅ 1 6 = 7 2 E ( X 1 ) + E ( X 2 ) = 7 2 + 7 2 = 7 E(X_1)=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=\frac{7}{2}\\ E(X_2)=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=\frac{7}{2}\\ E(X_1)+E(X_2)=\frac{7}{2}+\frac{7}{2}=7 E(X1)=161+261+361+461+561+661=27E(X2)=161+261+361+461+561+661=27E(X1)+E(X2)=27+27=7
结果竟然一致,书上是通过数学归纳法证明的,但是我在这里就写一下结论

如 果 X i 是 S 上 的 随 机 变 量 , n 是 正 整 数 , 并 且 a , b ∈ N , E ( X 1 + X 2 + X 3 ⋯ X n ) = E ( X 1 ) + E ( X 2 ) + E ( X 3 ) ⋯ E ( X n ) E ( a ⋅ X + b ) = a ⋅ E ( X ) + b 如果 X_i 是 S 上的随机变量,n是正整数,并且 a,b \in N,\\ E(X_1+X_2+X_3 \cdots X_n)=E(X_1)+E(X_2)+E(X_3) \cdots E(X_n)\\ E(a \cdot X+b)=a \cdot E(X)+b XiSna,bNE(X1+X2+X3Xn)=E(X1)+E(X2)+E(X3)E(Xn)E(aX+b)=aE(X)+b


n次试验的伯努利试验的期望值是 np,其中p是每次试验的中“成功”的概率

伯努利试验就是试验结果只有2种的事件

在开始证明前,先证明一个推论:
C ( n , k ) ⋅ k = n C ( n − 1 , k − 1 ) 证 明 : C ( n , k ) ⋅ k = n ! ( n − k ) ! k ! ⋅ k = n ⋅ ( n − 1 ! ) ( ( n − 1 ) − ( k − 1 ) ) ! ( k − 1 ) ! k ⋅ k = n ( n − 1 ) ! ( ( n − 1 ) − ( k − 1 ) ) ! ( k − 1 ) ! = n C ( n − 1 , k − 1 ) C(n,k) \cdot k=nC(n-1,k-1)\\ 证明:\\ C(n,k) \cdot k=\frac{n!}{(n-k)!k!} \cdot k= \frac{n \cdot (n-1!)}{((n-1)-(k-1))!(k-1)!k} \cdot k= n \frac{(n-1)!}{((n-1)-(k-1))!(k-1)!}=n C(n-1,k-1) C(n,k)k=nC(n1,k1)C(n,k)k=(nk)!k!n!k=((n1)(k1))!(k1)!kn(n1!)k=n((n1)(k1))!(k1)!(n1)!=nC(n1,k1)

C(n,k)就是总数为n的k个样本的组合总数

证明:
E ( X ) = ∑ k = 1 n k ⋅ p ( k ) = ∑ k = 1 n k ⋅ C ( n , k ) p k q ( n − k ) = ∑ k = 1 n n ⋅ c ( n − 1 , k − 1 ) p k q ( n − k ) = n p ∑ k = 1 n c ( n − 1 , k − 1 ) p k − 1 q n − k 令 j = k − 1 = n p ∑ k = 1 n c ( n − 1 , k − 1 ) p k − 1 q n − k = n p ∑ j = 0 n − 1 c ( n − 1 , j ) p j q n − ( j + 1 ) = n p ∑ j = 0 n − 1 c ( n − 1 , j ) p j q n − 1 − j = n p ( p + q ) n − 1 = n p E(X)=\sum^{n}_{k=1}k \cdot p(k)\\ =\sum^{n}_{k=1} k \cdot C(n,k) p^k {q}^{(n-k)} \\ =\sum^{n}_{k=1} n \cdot c(n-1,k-1) p^k {q}^{(n-k)}\\ =np \sum^{n}_{k=1} c(n-1,k-1) {p}^{k-1} {q}^{n-k} \\ 令 j=k-1 \\ =np \sum^{n}_{k=1} c(n-1,k-1) {p}^{k-1} {q}^{n-k} \\ =np \sum^{n-1}_{j=0} c(n-1,j) {p}^{j} {q}^{n-(j+1)} \\ =np \sum^{n-1}_{j=0} c(n-1,j) {p}^{j} {q}^{n-1-j} \\ =np {(p+q)}^{n-1}=np E(X)=k=1nkp(k)=k=1nkC(n,k)pkq(nk)=k=1nnc(n1,k1)pkq(nk)=npk=1nc(n1,k1)pk1qnkj=k1=npk=1nc(n1,k1)pk1qnk=npj=0n1c(n1,j)pjqn(j+1)=npj=0n1c(n1,j)pjqn1j=np(p+q)n1=np
其中倒数第二步是因为二项式定理

在算法的角度看,期望值其实就是平均算法复杂度。但是我看了很久,没有弄懂,所以暂时不深究了。

几何分布

这个证明很鬼扯,但是结论却很简单,所以直接上结论:
如 果 对 于 k = 1 , 2 , 3 , 4 ⋯ n , p ( X = k ) = ( 1 − p ) ( k − 1 ) ⋅ p , 那 么 随 机 变 量 X 具 有 带 参 数 p 的 几 何 分 布 。 如果对于k=1,2,3,4 \cdots n,p(X=k)={(1-p)}^{(k-1)} \cdot p,那么随机变量X具有带参数p的几何分布。 k=1,2,3,4n,p(X=k)=(1p)(k1)pXp
比如投掷骰子,问第n次出现6的概率是多少时:

p(X=1)=1/6
p(X=2)=5/6 * 1/6
p(X=3)=5/6 * 5/6 * 1/6
......
p(X=n)=(1-1/6)^(n-1) * 1/6

那么期望值就是:
E ( X ) = ∑ j = 1 n j ⋅ ( 1 − p ) ( n − 1 ) ⋅ p E(X)=\sum^{n}_{j=1} j \cdot {(1-p)}^{(n-1)} \cdot p E(X)=j=1nj(1p)(n1)p
当n趋近于无穷大时,上面的公式可以采用微积分的知识(我忘了)推导为:
E ( X ) = 1 p E(X)=\frac{1}{p} E(X)=p1

独立随机变量

随 机 变 量 X 和 Y 在 样 本 空 间 S 上 是 独 立 的 , 则 p ( X = r 1 ∩ Y = r 2 ) = p ( X = r 1 ) ⋅ p ( Y = r 2 ) 随机变量X和Y在样本空间S上是独立的,则 \\ p(X=r_1 \cap Y=r_2)=p(X=r_1) \cdot p(Y=r_2) XYSp(X=r1Y=r2)=p(X=r1)p(Y=r2)

这个很简单,抛开随机变量的定义,就是两个相互独立的事情,其一起发生的概率是各自发生概率的乘积。

在上面的基础上,再加上期望值的概念:
随 机 变 量 X 和 Y 在 样 本 空 间 S 上 是 独 立 的 , 则 E ( X Y ) = E ( X ) ⋅ E ( Y ) 随机变量X和Y在样本空间S上是独立的,则 \\ E(XY)=E(X)\cdot E(Y) XYSE(XY)=E(X)E(Y)
这里书上的证明我感觉是有问题的,也可能是我脑子糊涂了,暂时先记下来,需要的时候再用吧。

方差

方 差 使 用 V ( X ) , 或 者 σ ( X ) 表 示 : V ( X ) = ∑ s ∈ S ( X ( s ) − E ( X ) ) 2 ⋅ p ( s ) 方差使用 V(X),或者 \sigma(X) 表示:\\ V(X)=\sum_{s \in S} (X(s)-E(X))^2 \cdot p(s) 使V(X)σ(X)V(X)=sS(X(s)E(X))2p(s)

在下面说明方差的真实意义之前,先推导一个下面的公式:
V ( X ) = E ( X 2 ) − E ( X ) 2 V(X)=E(X^2)-E(X)^2 V(X)=E(X2)E(X)2
证明:
V ( X ) = ∑ s ∈ S ( X ( s ) − E ( X ) ) 2 ⋅ p ( s ) = ∑ s ∈ S ( X ( s ) 2 − 2 X ( s ) E ( X ) + E ( X ) 2 ) ⋅ p ( s ) = ∑ s ∈ S X ( s ) 2 ⋅ p ( s ) − ∑ s ∈ S 2 X ( s ) E ( X ) p ( s ) + ∑ s ∈ S E ( X ) 2 p ( s ) = E ( X 2 ) − 2 E ( X ) ∑ s ∈ S X ( s ) p ( s ) + E ( X ) 2 = E ( X 2 ) − 2 E ( X ) E ( X ) + E ( X ) 2 = E ( X 2 ) − E ( X ) V(X)=\sum_{s \in S} (X(s)-E(X))^2 \cdot p(s)\\ =\sum_{s \in S} (X(s)^2 - 2X(s)E(X)+E(X)^2) \cdot p(s)\\ =\sum_{s \in S} X(s)^2 \cdot p(s)-\sum_{s \in S} 2X(s)E(X)p(s)+\sum_{s \in S} E(X)^2p(s)\\ =E(X^2)-2E(X) \sum_{s \in S} X(s)p(s)+E(X)^2\\ =E(X^2)-2E(X)E(X)+E(X)^2 =E(X^2)-E(X) V(X)=sS(X(s)E(X))2p(s)=sS(X(s)22X(s)E(X)+E(X)2)p(s)=sSX(s)2p(s)sS2X(s)E(X)p(s)+sSE(X)2p(s)=E(X2)2E(X)sSX(s)p(s)+E(X)2=E(X2)2E(X)E(X)+E(X)2=E(X2)E(X)
其中一些点的说明:
E ( X ) 是 固 定 值 , 所 以 可 以 单 独 抽 离 出 来 。 并 且 ∑ s ∈ S p ( s ) = 1 。 E(X)是固定值,所以可以单独抽离出来。\\ 并且 \sum_{s \in S}p(s)=1。\\ E(X)sSp(s)=1
再来证明下面的值:
如 果 E ( X ) = μ , 则 V ( X ) = E ( ( X − μ ) 2 ) 如果 E(X)=\mu,则 V(X)=E((X-\mu)^2) E(X)=μV(X)=E((Xμ)2)

证明:
E ( ( X − μ ) 2 ) = E ( X 2 − 2 X μ + μ 2 ) = E ( X 2 ) − E ( 2 X μ ) + E ( μ 2 ) = E ( X 2 ) − 2 μ E ( X ) + μ 2 = E ( X 2 ) − 2 μ ⋅ μ + μ ⋅ μ = E ( X 2 ) − μ 2 = E ( X 2 ) − ( E ( X ) ) 2 = V ( X ) E((X-\mu)^2)=E(X^2-2X \mu+{\mu}^{2})\\ =E(X^2)-E(2X\mu)+E({\mu}^{2})\\ =E(X^2)-2\mu E(X)+{\mu}^{2}\\ =E(X^2)-2\mu \cdot \mu+ \mu \cdot \mu\\ =E(X^2)-{\mu}^2\\ =E(X^2)-(E(X))^2 =V(X) E((Xμ)2)=E(X22Xμ+μ2)=E(X2)E(2Xμ)+E(μ2)=E(X2)2μE(X)+μ2=E(X2)2μμ+μμ=E(X2)μ2=E(X2)(E(X))2=V(X)

比安梅公式

对 于 在 样 本 空 间 中 互 相 独 立 的 随 机 变 量 X 1 , X 2 , X 3 ⋯ X n , V ( X 1 + X 2 + X 3 ⋯ X n ) = V ( X 1 ) + V ( X 2 ) + V ( X 3 ) ⋯ V ( X n ) 对于在样本空间中互相独立的随机变量 X_1,X_2,X_3 \cdots X_n,\\ V(X_1+X_2+X_3 \cdots X_n)=V(X_1)+V(X_2)+V(X_3) \cdots V(X_n) X1,X2,X3XnV(X1+X2+X3Xn)=V(X1)+V(X2)+V(X3)V(Xn)

证明:
V ( X + Y ) = E ( ( X + Y ) 2 ) − ( E ( X + Y ) ) 2 = E ( X 2 + 2 X Y + Y 2 ) − ( E ( X ) + E ( Y ) ) 2 = E ( X 2 ) + 2 E ( X Y ) + E ( Y 2 ) − ( E ( X ) ) 2 − 2 E ( X ) E ( Y ) − ( E ( Y ) ) 2 = E ( X 2 ) + 2 E ( X ) E ( Y ) + E ( Y 2 ) − ( E ( X ) ) 2 − 2 E ( X ) E ( Y ) − ( E ( Y ) ) 2 = E ( X 2 ) − ( E ( X ) ) 2 + E ( Y 2 ) − ( E ( Y ) ) 2 = V ( X ) + V ( Y ) V(X+Y)=E((X+Y)^2)-(E(X+Y))^2=E(X^2+2XY+Y^2)-(E(X)+E(Y))^2\\ =E(X^2)+2E(XY)+E(Y^2)-(E(X))^2-2E(X)E(Y)-(E(Y))^2\\ =E(X^2)+2E(X)E(Y)+E(Y^2)-(E(X))^2-2E(X)E(Y)-(E(Y))^2\\ =E(X^2)-(E(X))^2+E(Y^2)-(E(Y))^2\\ =V(X)+V(Y) V(X+Y)=E((X+Y)2)(E(X+Y))2=E(X2+2XY+Y2)(E(X)+E(Y))2=E(X2)+2E(XY)+E(Y2)(E(X))22E(X)E(Y)(E(Y))2=E(X2)+2E(X)E(Y)+E(Y2)(E(X))22E(X)E(Y)(E(Y))2=E(X2)(E(X))2+E(Y2)(E(Y))2=V(X)+V(Y)
更多的参数只需要在上面的基础之上进行证明下去。

切比雪夫不等式

r ∈ N + , 那 么 p ( ∣ X ( s ) − E ( X ) ∣ > = r ) < = V ( X ) r 2 r \in N^+,那么 \\ p(|X(s)-E(X)|>=r) <= \frac{V(X)}{r^2} rN+p(X(s)E(X)>=r)<=r2V(X)

上面的定义啥意思呢?简单来说就是对于样本空间中的值,其值与期望值差的绝对值大于r的概率,小于方差除以r的平方。

证明:
设 事 件 A = { s ∈ S ∣ ∣ X ( s ) − E ( X ) ∣ > = r } V ( X ) = ∑ s ∈ S ( X ( s ) − E ( X ) ) 2 ⋅ p ( s ) = ∑ s ∈ A ( X ( s ) − E ( X ) ) 2 ⋅ p ( s ) + ∑ s ∉ A ( X ( s ) − E ( X ) ) 2 ⋅ p ( s ) 首 先 看 ∑ s ∈ A ( X ( s ) − E ( X ) ) 2 ⋅ p ( s ) 的 部 分 , 因 为 是 集 合 A 的 元 素 , 所 以 ( X ( s ) − E ( X ) ) > r , 所 以 ∑ s ∈ A ( X ( s ) − E ( X ) ) 2 ⋅ p ( s ) > ∑ s ∈ A r 2 p ( s ) 。 ∑ s ∉ A ( X ( s ) − E ( X ) ) 2 ⋅ p ( s ) 肯 定 大 于 0 , 所 以 V ( X ) > = ∑ s ∈ A r 2 p ( s ) , 即 p ( A ) < = V ( X ) r 2 设事件 A = \{s\in S | |X(s)-E(X)|>=r\}\\ V(X)=\sum_{s \in S}(X(s)-E(X))^2 \cdot p(s)\\ =\sum_{s \in A}(X(s)-E(X))^2 \cdot p(s)+\sum_{s \notin A}(X(s)-E(X))^2 \cdot p(s)\\ 首先看 \sum_{s \in A}(X(s)-E(X))^2 \cdot p(s) 的部分,因为是集合A的元素,所以 (X(s)-E(X))>r,所以 \sum_{s \in A}(X(s)-E(X))^2 \cdot p(s) > \sum_{s \in A} r^2 p(s)。\\ \sum_{s \notin A}(X(s)-E(X))^2 \cdot p(s) 肯定大于0,所以\\ V(X)>=\sum_{s \in A} r^2 p(s),即\\ p(A)<=\frac{V(X)}{r^2} A={sSX(s)E(X)>=r}V(X)=sS(X(s)E(X))2p(s)=sA(X(s)E(X))2p(s)+s/A(X(s)E(X))2p(s)sA(X(s)E(X))2p(s)A(X(s)E(X))>rsA(X(s)E(X))2p(s)>sAr2p(s)s/A(X(s)E(X))2p(s)0V(X)>=sAr2p(s)p(A)<=r2V(X)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值