期望和方差

主要介绍推公式可能会经常用的期望和方差的相关公式

期望

1. 基本公式

连续型随机变量x的期望计算公式:

若随机变量Y符合函数Y = g(x),且绝对收敛,那么随机变量Y的期望计算公式为:

(公式1)

2. 性质

主要记住以下几种性质即可

方差

方差在统计描述和概率分布中各有不同的定义,并有不同的公式。我们首先来看一下统计视角的

1. 统计视角

2. 概率视角-基本公式

在概率的视角,前面我们定义了E(X)为期望,那么方差的定义为:随机变量值X与其期望值E(X)之差的平方的期望值,公式如下:

当随机变量的参数X是离散的时候,公式可以写为:

对于连续型随机变量X,若其定义域为(a,b),其概率密度为f(x),期望为μ,那么其方差的计算公式为:

这个公式其实可以通过我们前面公式(1)推导出来,相当于g(x) = x - E(X) = x - \mu

 3. 性质

另外补充一下当随机变量X、Y独立时,XY的方差D(XY)计算公式:

这里面有一个非常重要点的点在于E(X)和E(Y)的均值为0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值