自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

TROUBLE I AM IN

小白的日常生活

  • 博客(30)
  • 收藏
  • 关注

原创 9.4 关系的闭包

9.4 关系的闭包先扩充两个概念:逆关系和补关系。假设从集合A到集合B的关系为R,即(a,b)∈R逆关系:R−1:如果(a,b)∈R,则(b,a)∈R补关系:R‾:(a,b)∉R假设从集合A到集合B的关系为R,即(a,b) \in R \\逆关系:{R}^{-1}:如果 (a,b) \in R,则(b,a) \in R \\补关系:\overline{R}:(a,b) \notin R假设从集合A到集合B的关系为R,即(a,b)∈R逆关系:R−1:如果(a,b)∈R,则(b,a)∈R补关系:R:

2021-01-31 22:56:09 848

原创 矩阵的布尔积和布尔幂的计算代码

布尔积和布尔幂的定义见这里因为我实在懒得每次都手算一次,那不如写个程序,让计算机帮忙算不就行了,于是就有了这个代码:<?php// 布尔积计算代码function booleanProduct($data1,$data2){ $returnData=[]; $columnLength=count($data2[0]); $heightLength=count($data1); for($height=0;$height<$heightLength;$hei

2021-01-31 22:16:13 3167 1

原创 9.3 关系的表示

9.3 关系的表示这一章统一都是二元关系。矩阵表示这个很简单,就是假设在集合A(1,2,3)和集合B(a,b,c)上的R为{(1,a),(2,b),(3,c)},则采用矩阵表示为:[100010001]\left[\begin{matrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{matrix} \right]⎣⎡​100​010​001​⎦⎤​用图表示这里列举一下集合A的关系:(2,1),(3,2

2021-01-31 17:02:11 145

原创 9.1 关系及其性质

9.1 关系及其性质关系的定义设A和B是集合,一个从A到B的二元关系是AXB的子集。啥意思呢?就是数据库中的外键的意思,比如下面:解释一下,就是课程a,有学生1和2选择了,课程b有学生1和3选择了。可以采用下面的形式表示:Rab1XX2X3X然后上面的关系可以采用(a,1)∈R表示来自集合1的a和来自集合2的1有关系,也可以表示成aR1,称为a与b有关系R。如果没有关系可以采用在R上加一个斜线来表示。比如:(a,1) \in R表示来自

2021-01-31 16:33:41 448

原创 容斥原理应用之:错位排列

容斥原理应用之:错位排列先解释一下什么是错位排列,原先的值不在原先的位置上,就是错误排列,比如下面这两个数组:<?php$array=[ 0=>0, 1=>1, 2=>2, 3=>3];// 这个数组就是错位排列$array2=[ 0=>1, 1=>2, 2=>3, 3=>0];// 这个数组不是错位排列,0还在它之前的位置上$array3=[ 0=>0,

2021-01-29 23:01:25 830

原创 8.6 容斥原理的应用

8.6 容斥原理的应用先说一种写法:首先Pi代表一个性质,N(Pi)代表集合中具有该性质的一个元素。∣A1∩A2∩A3⋯Ai∣=N(P1P2P3⋯Pi)代表同时具有集合A1,A2,A3⋯Ai形式的元素,或者说N(Pi)是这些集合的交集中的一个元素N(P1′P2′P3′⋯Pi′)=N−∣A1∪A2∪A3⋯Ai∣N代表总数,或者说全集。N(P1′P2′P3′⋯Pi′)代表不具有A1,A2⋯Ai集合任何性质的元素,按照之前的容斥原理N(P1′P2′P3′⋯Pi′)=N−∑1≤i≤nN(Pi)+∑1≤i<

2021-01-29 22:38:15 521

原创 8.5 容斥

8.5 容斥当只有3个集合时,容斥原理的计算公式就是:A∪B∪C=∣A∣+∣B∣+∣C∣−∣A∩B∣−∣A∩B∣−∣B∩C∣+∣A∩B∩C∣A \cup B \cup C=|A|+|B|+|C|-|A \cap B|-|A \cap B|-|B \cap C|+|A \cap B \cap C|A∪B∪C=∣A∣+∣B∣+∣C∣−∣A∩B∣−∣A∩B∣−∣B∩C∣+∣A∩B∩C∣这个很容易理解,但是在上面的基础之上进行扩充呢?假设集合的个数为n时,如何表示所有集合的值呢?∣A1∪A2∪A3⋯A

2021-01-26 23:53:59 192

原创 8.3 分治算法和递推关系

8.3 分治算法和递推关系基础内容:假设f(n)为求解问题的规模的总步数,g(n)表示每一步中额外的步骤。假设递推关系中,每次都将问题拆分为d个更小的问题,那么f(n)=f(nd)+g(n)假设 f(n)为求解问题的规模的总步数,g(n)表示每一步中额外的步骤。\\假设递推关系中,每次都将问题拆分为d个更小的问题,那么\\f(n)=f(\frac{n}{d})+g(n)假设f(n)为求解问题的规模的总步数,g(n)表示每一步中额外的步骤。假设递推关系中,每次都将问题拆分为d个更小的问题,那么f(

2021-01-26 22:18:09 613 1

原创 8.2 求解线性递推关系:求解常系数线性非齐次递推关系

求解常系数线性非齐次递推关系基础定义和前提内容如果一个递推关系是非齐次的,形如:an=c1⋅an−1+c2⋅an−2+c1⋅an−3⋯ck⋅an−k+F(n)且F(n)只依赖于n,F(n)≠0a_n=c_1 \cdot {a}_{n-1}+c_2 \cdot {a}_{n-2}+c_1 \cdot {a}_{n-3} \cdots c_k \cdot {a}_{n-k}+F(n) \\且 F(n)只依赖于n,F(n) \neq 0an​=c1​⋅an−1​+c2​⋅an−2​+c1​⋅an−3​

2021-01-24 16:01:44 3301

原创 8.2 求解线性递推关系:常系数的k阶线性齐次递推关系

8.2 求解线性递推关系常系数的k阶线性齐次递推关系“一个常系数的k阶线性齐次递推关系是形如:an=c1⋅an−1+c2⋅an−2+c3⋅an−3+⋯ck⋅an−k的递推关系,其中c1,c2,c3⋯ck是实数,且ck≠0一个常系数的k阶线性齐次递推关系是形如:\\a_n=c_1 \cdot {a}_{n-1}+c_2 \cdot {a}_{n-2}+c_3 \cdot {a}_{n-3}+\cdots c_k \cdot {a}_{n-k}\\的递推关系,其中 c_1,c_2,c_3 \cdot

2021-01-23 16:44:04 2531 1

原创 8.1 递推关系的应用

8.1 递推关系的应用兔子和斐波那契数列简单来说就是一个僵尸,初始等级为1,每过一个月提升1级,升级到2级之后就可以感染下一个人,将其变成1个1级的僵尸。(我不喜欢兔子的那个例子,因为我总是在纠结一个公兔和多个母兔子的问题)。然后用递归来计算上面的问题就是:function getNumber($month){ if($month==1){ return [1=>1,2=>0]; } $lastMonth=getNumber($month-1);

2021-01-19 22:57:20 450

原创 7.4 期望值和方差

7.4 期望值和方差期望值E(X)=∑s∈Sp(s)X(s)E(X)=\sum_{s \in S}p(s)X(s)E(X)=s∈S∑​p(s)X(s)例如一个点数从1到6的骰子,其投掷一次的期望值是E(X)=1⋅16+2⋅16+3⋅16+4⋅16+5⋅16+6⋅16E(X)=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \fr

2021-01-17 17:17:43 910

原创 7.3 贝叶斯定理

7.3 贝叶斯定理在之前我们知道:p(E∣F)=P(E∩F)p(F)但是如果我们知道:p(E∣F),p(E∣F‾),p(F),那么我们就可以知道p(F∣E)在之前我们知道:p(E|F)=\frac{P(E \cap F)}{p(F)}\\但是如果我们知道:p(E|F),p(E|\overline{F}),p(F),那么我们就可以知道p(F|E)在之前我们知道:p(E∣F)=p(F)P(E∩F)​但是如果我们知道:p(E∣F),p(E∣F),p(F),那么我们就可以知道p(F∣E)证明:因为:p(

2021-01-16 15:59:41 124

原创 有趣的概率问题

有趣的概率问题蒙地厅大厦的3门难题有3扇门,其中只有1扇门后面有奖金,主持人知道是哪一扇门。游戏开始时,你需要首先选择一扇,然后主持人会打开一扇没有奖金的门,这个时候你有第二次选择的权利,你是否会选择更换你的选择?在说这道题之前,在漫改电视剧《欺诈游戏》中有个很有意思的扑克游戏:感兴趣可以到B站看在一个不可见的袋子里有2张牌,其中1张两面花色都一致,称为暗牌,另一张背面与暗牌的花色一致,正面是天使的画像,称为亮牌。游戏开始时,你从中抽出一张来,这个时候双方开始下注,胜者可以获取所有赌注。

2021-01-16 13:41:19 887

原创 7.2 概率论

7.2 概率论“假设S是n个元素的集合,均匀分布赋给S中的每个元素的概率是1n假设S是n个元素的集合,均匀分布赋给S中的每个元素的概率是 \frac{1}{n}假设S是n个元素的集合,均匀分布赋给S中的每个元素的概率是n1​事件E的概率是在E中结果的概率之和,即p(E)=∑s∈Ep(s)事件E的概率是在E中结果的概率之和,即\\p(E)=\sum_{s \in E}p(s)事件E的概率是在E中结果的概率之和,即p(E)=s∈E∑​p(s)”"如果E1,E2⋯En是样本空间S中两两不

2021-01-13 23:00:25 214

原创 7.1 离散概率引论

7.1 离散概率引论事件E是结果具有相等可能性的有限样本空间S的子集,则事件E的概率是:p(E)=∣E∣∣S∣事件E是结果具有相等可能性的有限样本空间S的子集,则事件E的概率是:\\p(E)=\frac{|E|}{|S|}事件E是结果具有相等可能性的有限样本空间S的子集,则事件E的概率是:p(E)=∣S∣∣E∣​事件E是样本空间S的一个事件。事件E‾=S−E(事件E的补事件)的概率是:E‾=S−E事件E是样本空间S的一个事件。事件 \overline{E}=S-E(事件E的补事件)的概率是:\

2021-01-13 21:48:02 126

原创 PHP 8 之 重写方法时参数可变

PHP 8 之 重写方法时参数可变参考博客:https://www.php.cn/toutiao-462471.html<?phpclass Human{ private $name; private $age; private $sex; public function setInfo($name,$age,$sex){ $this->name=$name; $this->age=$age; $thi

2021-01-12 17:48:17 218 1

原创 php 8 之 ValueError

php 8 之 ValueError参考博客:https://www.php.cn/toutiao-462471.html直接上代码:<?phptry { array_rand([], 0);}catch (\ValueError $e){ print "ValueError:".PHP_EOL; print_r($e);}catch (\Exception $e){ print "Exception:".PHP_EOL; print_r($e);

2021-01-12 17:47:51 141

原创 Mac Os Jetbrains 教育版配置

Mac Os Jetbrains 教育版配置Jetbrains公司的产品,好像在2020.02之后软件,就不支持Active Code的方式来使用了。我之前是使用插件破解的,但是奈何版本太老,不支持php 8的语法,后来搞了一个教育版(别问我教育版怎么搞账号),虽然只能使用一年,但是起码能支持php 8的语法了。在这里就是想记录一下,我从插件升级到正式账号的时候,是怎么操作的。删除历史配置/Users/你的用户名/Library/Application Support/JetBrains

2021-01-11 18:30:03 320

原创 6.5 排列与组合的推广

6.5 排列与组合的推广有重复的排列当具有n个元素的集合允许重复的r位排列时,排列数是 n^r比如以5个字母为总数的英语单词数量最多是:5^26有重复的组合当具有n个元素的集合允许重复的r位组合时,组合总数是 C(n+r-1,r)=C(n+r-1,n-1)这个怎么理解呢,当我们允许选择重复值时,其实就是在其中允许加入空值,这样的空值最多允许加入(r-1)位,因为全部的空值在之前的选项中有,如下图所示:部分重复的排列简单来说就是不是所有值都可以重复,比如Apple这个单词有多少种排列

2021-01-10 14:27:40 350

原创 6.4 二项式系数和恒等式

6.4 二项式系数和恒等式C(n,r)可以记做 (nr),因为常出现在二项式展开式中作为系数,所以也叫做二项式系数。C(n,r) 可以记做\ \binom{n}{r},因为常出现在二项式展开式中作为系数,所以也叫做二项式系数。 C(n,r)可以记做 (rn​),因为常出现在二项式展开式中作为系数,所以也叫做二项式系数。二项式定理(x+y)n=∑j=0n(nj)xn−jyj=(n0)xn+(n1)xn−1y+⋯+(n1)xyn−1+(nn)yn(x+y)^n=\sum^{n}_

2021-01-10 00:16:01 911

原创 6.3 排列与组合

6.3 排列与组合排列具有n个不同元素的集合的r排列数是P(n,r)=n*(n-1)(n-2) … (n-r+1)先解释一下这里的r的含义啊。就是要排列多少长度。比如P(10,3)就是10个元素排3个长度,那排列数自然是10*9*8,理解很简单,第一个位子有10个可选值,第二个有9个可选值,因为第一个位置已经使用掉了一个元素,同理,第三个位子有8个可选值。下面这个推论你直接从数学公式推导的角度也可以看懂:P(n,r)=n!(n−r)!P(n,r)=\frac{n!}{(n-r)!}P(n

2021-01-07 23:30:57 372

原创 6.2 鸽巢原理

6.2 鸽巢原理鸽巢原理:如果k+1个或更多的物品放入k个盒子,那么至少有一个盒子包含了2个或更多的物体。鸽巢原理也叫做狄利克雷抽屉原理。这个很简单,比如现场有366人,那么至少有2个人的生日是同一天。推论1:一个从有k+1甚至更多的元素的集合到k个元素的集合的函数f不是一对一函数。一对一函数的定义见这里广义鸽巢原理:如果N个物体放入k个盒子,那么至少有一个盒子包含了至少N/k个物体。这个是在鸽巢原理的基础上,考虑了倍数的情况,还是上面的那个生日的例子,假设现在现场有365*2个人

2021-01-07 21:01:45 591 2

原创 PHP 8 之 WeakMap

PHP 8 之 WeakMap参考博客:https://zhuanlan.zhihu.com/p/84862214https://www.php.cn/toutiao-462471.html先来看一个使用数组的例子:基础代码:动物和动物园:<?phpclass Animal{ public $name; public function __construct($name){ $this->name=$name; }}class Z

2021-01-06 18:34:50 781

原创 6.1 计数的基础

6.1 计数的基础乘法法则假定一个过程可以被分解成前后两个任务,如果完成第一个任务有k种方法,在第一个任务之后的第二个任务有r种方法,那么完成这个任务的过程有k*r种方法。$amount=[];for ($k=1;$k<=100;$k++){ for ($r=1;$r<=100;$r++){ // 乘法法则 $amount[]=$k*$r; }}print_r($amount);求和法则假定一个过程可以被分解成两个独立的任务

2021-01-04 21:35:02 137

原创 5.4 递归算法(附:归并排序)

5.4 递归算法若一个算法通过把问题归约到带更小输入的相同问题的实例来解决原来的问题,则这个算法称为递归的。简单来所就是,将输入减小,比如下面这个阶乘的例子,求n!的值:function factorial($n){ if ($n==1){ return 1; } return $n*factorial($n-1);}在上面的函数中,同一个函数,输入不断减小。实操:归并排序先说什么是归并排序,就是先将数组拆分成更小的数组,然后真对这些小数组进行排序

2021-01-03 17:24:30 179

原创 5.2 强归纳法和良序性

5.2 强归纳法和良序性强归纳法强归纳法:要证明对所有整数n而言,P(n)为真,需要完成如下两个步骤:基础步骤:证明P(1)为真。归纳步骤:假设对于不超过k的j而言,P(j)为真,那么P(k+1)也为真。实操采用强归纳法证明如果n是大于1的整数,则n可以写作素数之积。基础步骤:当n=2时,命题成立,2=1×2归纳步骤:假设对于大于1,小于k的整数,都可以写作素数之积。那么如果k+1是素数,很简单,k+1=1×(k+1),如果k+1是合数,则k+1可以写成两个小于k+1的正整数a和b的积(合

2021-01-03 15:06:56 2194 1

原创 5.1 数学归纳法

5.1 数学归纳法**数学归纳法原理:**为证明对所有的正整数n,p(n)为真,需要完成两个步骤:基础步骤:P(1) 为真归纳步骤:假设p(k)为真时,证明p(k+1)为真实操使用数学归纳法证明:P(n)=1+2+3⋯n=n(1+n)2使用数学归纳法证明:\\P(n)=1+2+3 \cdots n=\frac{n(1+n)}{2}使用数学归纳法证明:P(n)=1+2+3⋯n=2n(1+n)​证明:基础步骤:n=1时,1⋅(1+1)2=1归纳步骤:假设对于n=k时成立P(k)=k(k+

2021-01-02 17:22:47 345

原创 RSA加密

RSA加密 操作过程和原理欧拉定理这里只是讲解欧拉定理,证明我暂时还没有那个能力。两个数a和n互质,则对于所有小于n,大于0的整数中,与n互质的数,其都满足以下定理:aφ(n)≡1 (mod n),其中φ(n)就代表上面说到的数组成的集合,也叫做欧拉函数两个数a和n互质,则对于所有小于n,大于0的整数中,与n互质的数,其都满足以下定理:\\{a}^{\varphi(n)} \equiv 1\ (mod\ n),其中 \varphi(n)就代表上面说到的数组成的集合,也叫做欧拉函

2021-01-02 15:19:21 118

原创 4.4 求解同余方程

4.4 求解同余方程线性同余方程ax≡b (mod m),其中,m∈N+,a,b∈N,x为变量,这样的方程称为线性同余方程ax \equiv b\ (mod\ m),其中,m \in {N}^{+},a,b \in N,x为变量,这样的方程称为线性同余方程ax≡b (mod m),其中,m∈N+,a,b∈N,x为变量,这样的方程称为线性同余方程首先,这是个方程,所以x是变量,剩下的就是在确定a,b,m的值之后,确定x的可选值有哪些。解题思路是这样的:gcd

2021-01-02 11:47:46 1433

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除